

Руководство по монтажу, подключению и настройке

в составе главного привода лифта

Оглавление

1.	Введение	3
	1.1. Маркировка и основные параметры	3
	1.2. Подбор преобразователя частоты	4
	1.3. Подбор тормозного резистора	4
2.	Подключение и монтаж	5
	2.1. Общие положения	5
	2.2. Работа с пультом управления	5
	2.3 Изменение параметров в ЧП с панели частотного преобразователя	8
	2.4 Копирование параметров ЧП посредством съемной панели	10
	2.5 Подключение силовых линий	11
	2.6. Подключение энкодера	
	2.6.1. Подключение энкодера для асинхронного двигателя	
	2.6.2. Подключение энкодера для синхронного двигателя	
	Выполнение тестирования положения полюсов/энкодера (тюнинг энкодера)	
	2.7. Подключение сигнальных кабелей	
	2.7.1. Прокладка кабелей	
	2.7.2. Определение типа управления входами	
	2.7.3. Назначение и настройка цифровых входов преобразователя частоты серии iV5L	
	2.7.4. Настройка аварийного сигнала/запрета движения/STO	
3.	2.7.5. Выходы преобразователя частотыВвод параметров двигателя, автотюнинг двигателя	
٦.	3.1. Ввод параметров двигателя	
	3.2. Выполнение автоматического тестирования параметров (автотюнинга) двигателя	
4.		
	4.1. Настройка кривой изменения скорости	
	4.2. Функция короткого этажа для скоростных лифтов	
	Настройка режима работы (контроля скорости)	
	5.1. Настройка режима работы для асинхронного двигателя с энкодером	32
	5.2. Настройка режима работы для асинхронного двигателя без энкодера	32
	5.2.1. Общие настройки	33
	5.2.2. Старт/стоп с постоянного тока	
	5.2.3. Регулятор против колебаний тока (AHR)	
	5.3. Настройка режима работы для синхронного двигателя	
6.		
	6.1. Режим эвакуации	
	6.1.1. Схема подключения преобразователя частоты для режима эвакуации:	
	6.1.2. Настройки режима эвакуации	
	6.1.3. Поиск легкого направления вращения (ALLS)	38
	6.2. Использование весового датчика для регулирования момента	
	6.2.1. Подготовка для использования весового датчика	
	6.2.2. Калибровка датчика	
7.		
	7.1. Ограничение момента	

	7.2. Тепловая защита двигателя	42
	7.3. Расхождение по скорости	42
	7.4. Проверка фаз	42
	7.6. Перегрузка	
	7.7. Превышение скорости	
8.	·	
	8.1. Просмотр ошибок	
	8.2. Сброс ошибки	
	8.3. Перечень ошибок	
9.	•	
٠.	9.1. Предварительные установки	
	9.2. Первые старты	
	9.2.1. Асинхронный двигатель с энкодером	
	9.2.2. Синхронный двигатель	
	9.2.3 Асинхронный двигатель без энкодера	
	9.3. Настройка времени замедления и движения на скорости дотягивания	47
	9.4. Выставление точки останова	
	9.5. Выставление времени разгона	
	9.6. Выставление скорости и параметров короткого этажа	
	9.6.1. Для станций НКУ МППЛ/Лира:	
	9.6.2. Для станций управления Союз (доработанный вариант)	
	9.6.3. Для остальных станций (не использующих промежуточную скорость)	
	9.7. Особенности настройки движения для асинхронного двигателя с энкодером	50
	9.7.1. ПИ регулятор автоматической регулировки скорости	50
	9.7.2. Двойные уставки ПИ, устранение отката	
	9.7.3. Устранение посторонних звуков при старте/останове	51
	9.8. Особенности настройки движения для синхронного двигателя	
	9.8.1. Функция противоотката (ARF)	
	9.8.2. Дополнительные настройки автоматического регулятора скорости	
	9.9. Выполнение настройки движения для асинхронного двигателя без энкодера	
	9.10. Контроль текущих параметров движения	
	оиложение А. Клеммы платы ввода-вывода	
	оиложение Б. Входы-выходы преобразователя частоты оиложение В. Габаритные и установочно-присоединительные размеры	
	оиложение Б. гаоаритные и установочно-присоединительные размерыоиложение Г. Схемы подключения к станциям управления	
• • •	Схема подключения к станции НКУ МППЛ (асинхронный двигатель)	
	Схема подключения к станции НКУ МППЛ/Лира (синхронный двигатель)	
	Схема подключения к станции Союз	
	Схема подключения к станции УЛ	
	Схема подключения к станции УКЛ	
	Схема подключения к станции МСУ Олимп	
П.	Схема подключения к станции ШУЛМ	
Ш	риложение Д. Сводные таблицы настроек	
	1. Настройки зависящие от используемой станции управления	
	2. Настройки под асинхронный двигатель с энкодером	
	3. Настройки под асинхронный двигатель без энкодера	
	3. Настройки под синхронный двигатель	67

1. Введение

Настоящее руководство описывает подключение и настройку преобразователя серии iV5Lift при использовании его для регулирования главного привода лифтов при использовании как асинхронных редукторных лебедок так и синхронных безредукторных лебедок.

Данный преобразователь разработан на базе хорошо зарекомендовавшего себя привода Starvert iV5 и включает ряд улучшенный функций направленных на управление лифтами.

В стандартную комплектацию входит:

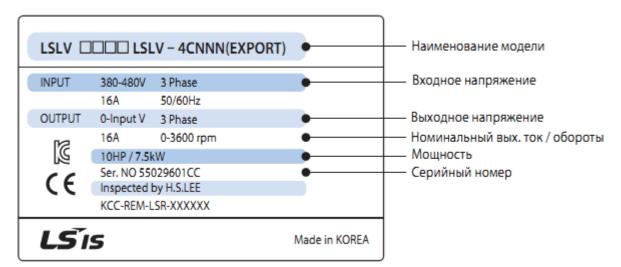
- Преобразователь частоты
- Панель управления

Для управления синхронными лебедками преобразователь частоты должен быть укомплектован дополнительной платой подключения энкодера SinCos/EnDat.

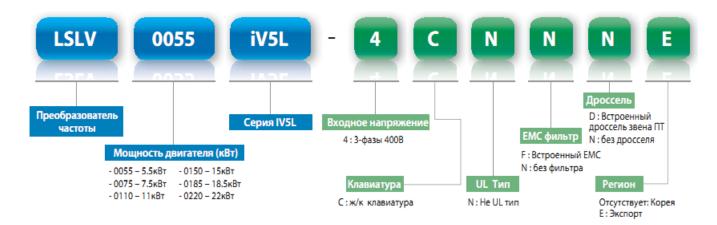
Принятые соглашения:

- примечание

- важное предупреждение по тексту



- риск повреждения оборудования



- опасность травмирования, обеспечение безопасности

1.1. Маркировка и основные параметры

ООО «ПневмоЭлектроСервис» Версия 2.10

Технические характеристики преобразователей частоты класса 400В

Модель iV5L-	4	0055	0075	0110	0150	0185	0220	
Мощность дв	игателя, кВт	5,5	7,5	11,0	15,0	18,5	22,0	
D. Wo suu io	Ном. мощность, кВА	9,1	12,2	18,3	22,9	29,0	34,3	
Выходные	Номинальный ток, А	12	16	24	30	39	45	
параметры	Выходное напряжение, В	0-400В (не более входного напряжения)						
Входные	Входное напряжение, В	Три фазы, 380-440В переменного тока						
параметры	Частота, Гц	50-60Гц						
Вес, кг		7,7	7,7	13,7	13,7	20,3	20,3	

1.2. Подбор преобразователя частоты

Подбор преобразователя частоты должен производиться по номинальному току двигателя и номинальному току преобразователя. Мощность двигателя указанная в характеристиках преобразователя частоты ориентировочная и рассчитана на стандартный усредненный двигатель.

Должен быть выбран ближайший преобразователь частоты, ток которого больше либо равен номинальному току двигателя (дополнительный запас по мощности преобразователя частоты не является необходимым и ведет только к увеличению габаритов, массы и стоимости преобразователя частоты).

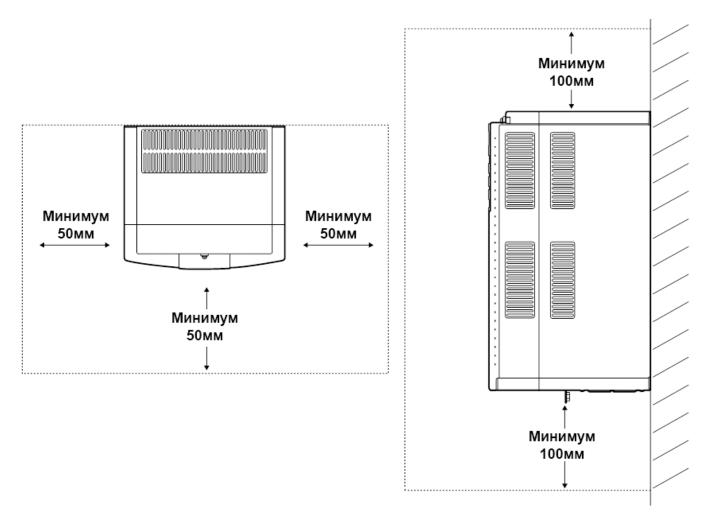
1.3. Подбор тормозного резистора

При подборе тормозного резистора следует руководствоваться в первую очередь параметрами лифта: грузоподъемностью, его номинальной скоростью, высотой подъема и преполагаемой интенсивностью использования.

Рекомендованные тормозные резисторы в зависимости от типа лифта (нормальная интенсивность работы):

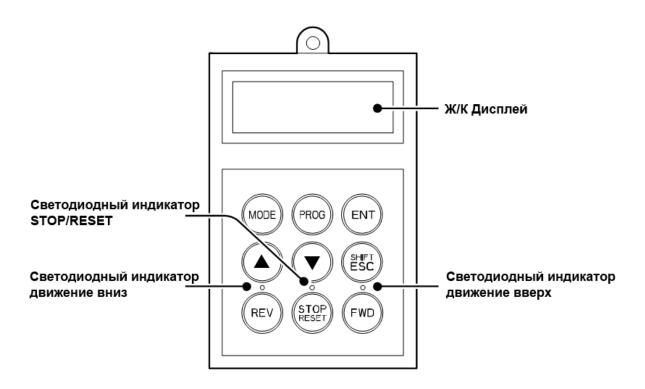
Грузоподъемность	Номинальная	Тип резистора	Кол-во,	Итоговая	Сопротивление,
лифта, кг	скорость, м/с	тип резистора	шт.	мощность, Вт	Ом
400	1	MCRF-1000 90 ohm J	1	1000	90
630	1	MCRF-1200 60 ohm J	1	1200	60
030	1,6	MCRF-2000 60 ohm J	1	2000	40
1000	1-1,6	MCRF-1500 80 ohm J	2	3000	40
1000	1,6-2	MCRF-2000 60 ohm J	2	4000	30

При использовании нескольких резисторов (как указано в таблице), они соединяются параллельно. При наличии тяжелых условий работы (высокая интенсивность, большая этажность, высокоскоростностной синхронный двигатель, высокая температура окружающей среды/плохая вентиляция) мощность тормозных резисторов должна быть увеличена во избежание их чрезмерного нагрева и выхода из строя.


ООО «ПневмоЭлектроСервис» Версия 2.10

2. Подключение и монтаж

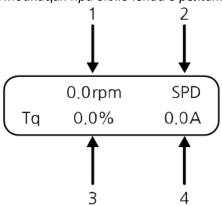
2.1. Общие положения


- Запрещается устанавливать ЧП в местах с повышенным уровнем вибрации.
- Температура окружающей среды влияет на продолжительность работоспособного состояния ЧП, поэтому необходимо стремиться расположить инвертор в местах с температурой в диапазоне от -10 до +40С.
- Располагать ЧП необходимо на невоспламеняющихся поверхностях ЧП работает с выделением большого количества тепла.
- ЧП необходимо размещать в местах с низкой влажностью.
- Для защиты ЧП от попадания посторонних предметов необходимо использовать глухие крышки.
- Для предотвращения перегрева ЧП, необходимо размещать его с соблюдением минимальных расстояний от поверхности преобразователя до стен или других поверхностей.

2.2. Работа с пультом управления

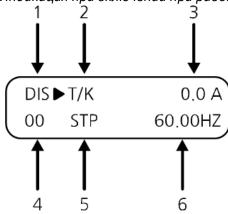
Для настройки параметров ЧП и двигателя, получения текущих данных о работе, настройки параметров работы привода, а так же отображения кодов неисправности возникших в процессе работы применяется универсальный кнопочный пульт с жидкокристаллическим вспомогательными светодиодами (далее пульт). Дисплей пульта позволяет отображать до 32символов.

Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

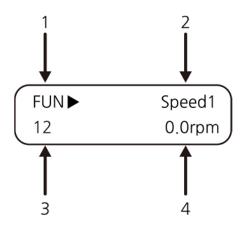


В таблице приведены функциональные данные кнопок и светодиодов пульта.

Элемент	Название	Функция	Описание				
			Разрешает смещение к другим группам параметров (DIS				
	MODE	Режим	->IO->PAR->FUN) и выполняет переход к первому				
		_	элементу в группе.				
	PROG	Программа	Разрешает изменение установленного параметра.				
		_	Разрешает смещение к другим группам параметров (DIS<-				
	ENT	Вход	IO<-PAR<-FUN) и сохраняет измененное значение				
			выбранного параметра.				
	Up 📥	Вверх	Переход к следующему параметру или увеличение				
		'	значения этого параметра.				
	Down 🔻	Вниз	Переход к следующему параметру или уменьшение				
Кнопка	·		значения этого параметра.				
		_ ,	Работает как кнопка смещения к следующему символу в				
	SHIFT/ESC	Сдвиг/выход	режиме установки параметров, или как «Выход без				
			сохранения изменений» в остальных режимах.				
	REV	Пуск реверс	Ручное управление двигателем с ЧП. Включение ЧП на				
		, , , , , , , , , , , , , , , , , , , ,	вращение двигателя (условно назад).				
			Ручное управление двигателем с ЧП. Останов двигателя				
	STOP/RESET	Стоп/сброс	при работе ЧП на вращение двигателя.				
	,		Сброс ошибки после возвращения ЧП в нормальную				
			работу при возникновении неисправности.				
	FWD	Пуск вперед	Ручное управление двигателем с ЧП. Включение ЧП на				
		, , , , ,	вращение двигателя (условно вперед).				
			Светится, когда выполняется вращение вала двигателя				
	REV	Пуск реверс	(условно назад).				
		, , ,	Мигание при разгоне и торможении.				
			Постоянное свечение при установившейся скорости.				
Светодиод	STOP/RESET	Стоп/сброс	Постоянное свечение если двигатель остановлен.				
	-	•	Мигание при возникновении неисправности.				
			Светится, если выполняется вращение вала двигателя				
	FWD	Пуск вперед	(условно вперед).				
		, , , , , ,	Мигание при разгоне и торможении.				
			Постоянное свечение при установившейся скорости.				


Отображаемая на дисплее информация

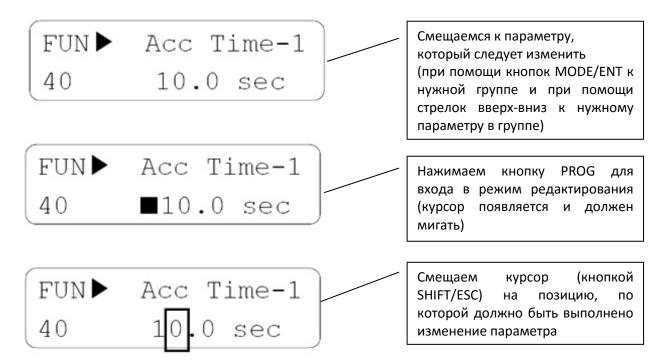
Индикация при включении в режимах с энкодером (Speed u Speed (Sync))


	Функция	Описание			
1	Скорость вращения	Действующая скорость вращения в RPM (оборотах в минуту).			
2	Режим работы	SPD: Векторный режим контроля скорости (с энкодером) BX: Аварийный останов BAT: Режим эвакуации			
3	Создаваемый момент	Отображается в % значение от номинального момента двигателя			
4 Выходной ток Значение выходного тока ЧП		Значение выходного тока ЧП			

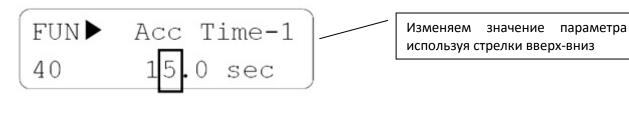
Индикация при включении при работе с асинхронным двигателем без энкодера

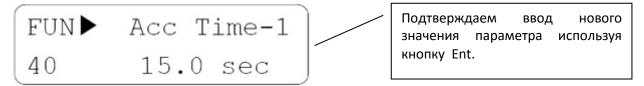
	Функция	Описание				
1	Группа	Текущая группа параметров				
		Первая буква источник задания команды на вращение:				
		Т – клеммы				
		К — клавиатура				
2	Истонник запания	O – интерфейс RS485				
	Источник задания	Вторая буква источник задания скорости				
		К – клавиатура (параметры преобразователя частоты и вх.клеммы)				
		А – аналоговый вход				
		О – интерфейс RS485				
3 Выходной ток Значение выходного тока ЧП		Значение выходного тока ЧП				
4	Номер параметра	Текущий номер параметра				
		Текущий статус преобразователя частоты:				
5	Статус	STP – останов				
Э		FWD – прямое направление вращения (движение вверх)				
		REV – обратное направление вращения (движение вниз)				
6						

ООО «ПневмоЭлектроСервис» Версия 2.10



	Функция	Описание
1	Группа параметров	Отображение названия каждой из групп параметров (DIS, DIO, PAR, FUN, CON, PRT, COM группы)
2	Название параметра	Отображение названия устанавливаемого параметра
3 Номер параметра		Отображение номера устанавливаемого параметра
4	Значение параметра	Отображение значения устанавливаемого параметра


2.3 Изменение параметров в ЧП с панели частотного преобразователя


Установка значения параметра ЧП приведена в примере.

Пример: Требуется изменить время разгона (1st acceleration time) с 10с то 15с. Для этого необходимо:

OOO «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

Примечание

Часть параметров не может быть изменена в трех случаях:

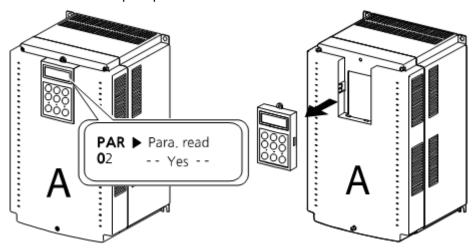
- 1. Изменение некоторые параметров блокируется во время движения.
- 2. Изменение многих параметров блокируется при срабатывании защит (до сброса ошибки)
- 3. Может быть установлена блокировка изменения параметров PAR_04 [Блокировка параметров].

Описание групп программируемых параметров ЧП.

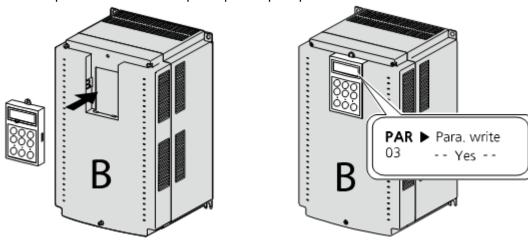
Название группы Индикация (поз.1 на рис 4) Описание							
Display	DIS	Отображение скорости двигателя, режима контроля двигателя, генерируемого момента, выходного тока, расхождения по скорости ошибки и т.д.					
Communication	СОМ	Настройка внешних интерфейсов (RS-485)					
Protection	PRT	Настройка защит					
Control	CON	Настройка параметров связанных с реализацией алгоритмов управления скоростью/частотой, например параметры автоматического регулятора скорости при использовании энкодера, настройка параметров компенсации скольжения, включая параметры автоматического и ручного буста					
Function	FUN	Настройка параметров движения, кривых разгона и торможения, скоростей/частоты, времени разгона и останова и т.п.					
Analog IO	AIO	Настройка аналоговых входов/выходов					
Digital IO	DIO	Настройка цифровых входов/выходов					
Parameters	PAR	Настройка параметров двигателя и энкодера, выполнение автотюнинга и т.п.					

Ввод параметров рекомендуется выполнять в следующем порядке (по группам) – PAR, DIO, FUN, CON, РКТ так как некоторые параметры зависимы (например, настройки параметров режима эвакуации в группе FUN будут доступны только после соответствующей настройки входа в группе DIO).

ООО «ПневмоЭлектроСервис» Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 9


2.4 Копирование параметров ЧП посредством съемной панели

Параметры частотного преобразователя могут быть свободно выгружены в съемную панель ЧП iV5L, и после установки данной панели в другой аналогичный ЧП, эти параметры могут быть выгружены в память программируемого частотного преобразователя (копирование возможно при полном совпадении версии прошивки преобразователя частоты, в противном случае выгрузка параметров из панели блокируется во избежание некорректной настройки).


Таким образом, возможно обеспечить типовое программирование инверторов заданным набором параметров.

Перенос значения параметров из одного преобразователя частоты в другой:

- 1. Зайти в параметр PAR_02 Para Read (чтение параметров в панель) ввести Yes и нажать Ent. Дождаться окончания копирования параметров в панель (надпись сменится на No).
- 2. Снять панель с преобразователя частоты.

- 3. Установить панель со скопированными параметрами на другой преобразователь частоты.
- 4. Выбрать параметр PAR_03 Para write (запись параметров) и ввести Yes. Дождаться окончания копирования значения параметров в преобразователь частоты.

блокирования параметров от случайного их изменения неквалифицированным персоналом:

Параметр	Функция	Значение				
PAR 04	PAR 04 Para. Lock					
	Установка защиты от изменения параметров. Установка значения параметра в					
	«12» отключает возможность изменения параметров.					
	Для включения возможности редактирования параметров снова введите					
	«12» в данном параметре.					
PAR 05	Password	0				
	Задание пароля для входа в режим просмотра и редактирования параметров.					
	При установке любого 4-х значного значения отличного от 0 будет установлен					
	пароль и при попытке войти в параметры для их редактирования будет					
	автоматически предложено ввести пароль.					
	В случае, если вы забыли пароль, то необходимо ввести «5052» - это пароль					
	администратора, который позволяет сбросить значение пользовательского					
	пароля в «О» и тем самым снять запрос пароля.					

2.5 Подключение силовых линий

Подключение силовых линий заключается в подключении проводников питающей сети к клеммам R, S, T, подключение силовых проводников между выходом инвертора U, V, W и соответствующими клеммами двигателя, а так же подключение проводников заземления к соответствующей клемме (для преобразователей частоты мощностью 5,5-7,5кВт клемма G, для преобразователей частоты 11кВт и выше обозначена значком заземления).

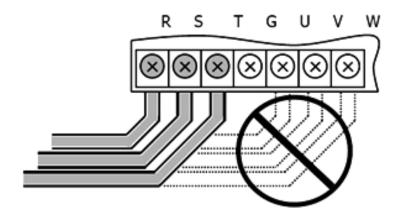

В качестве кабеля от преобразователя частоты до двигателя следует использовать четырехжильный кабель (три проводника для фаз и один для заземления) в экране. Экран силового кабеля должен быть присоединен к заземлению.

Таблица 1 – Данные о крепежных изделиях и сечениях силовых проводов.

Мощность	Размер затях	Момент затяжки	(кольцево	Наконечник (кольцевой типа НКИ		Сечение пр		
(кВт)			или вилочный НВИ)		MM ²		AWG	
		(H·M)	R,S,T	U,V,W	R,S,T	U,V,W	R,S,T	U,V,W
5,5	M5	1,47	5,5-5	5,5-5	3,5	2	12	14
7,5	M5	1,47	14-5	14-5	3,5	3,5	12	12
11	M6	2,55	14-5	14-5	5,5	5,5	10	10
15	M6	2,55	22-6	22-6	14	8	6	8
18,5	M8	4,41	38-8	38-8	14	8	6	8
22	M8	4,41	38-8	38-8	22	14	4	6

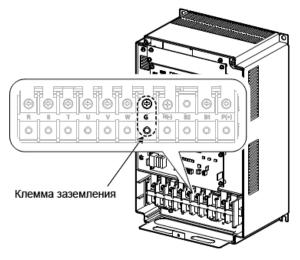
Запрещается подключение 3-х фазной питающей сети 380В 50Гц к выходам инвертора (U,V,W)

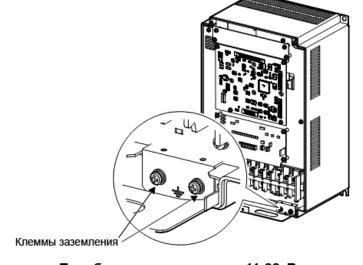
Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 11

Подключение тормозного резистора

Тормозной резистор подключается к клеммам В1 и В2 преобразователя частоты.

В процессе работы тормозной резистор может значительно нагреваться. Запрещается располагать тормозной резистор под преобразователем частоты или другими электронными компонентами или вплотную к ним.


Заземление



- Заземление устройств необходимо выполнять в соответствии с ПУЭ
- Сопротивление между точкой подключения заземляющего проводника на ЧП/двигателе и точкой подключения проводника к шине заземления должно быть не более 100м.

Сечение заземляющего проводника следует принимать не менее чем сечение фазных проводников.

Расположение клеммы заземления:

Преобразователь частоты 5,5-7,5кВт

Преобразователь частоты 11-22кВт

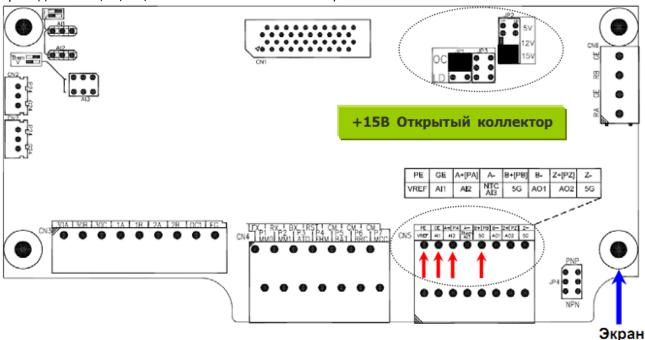
2.6. Подключение энкодера

2.6.1. Подключение энкодера для асинхронного двигателя

Подключение инкрементального энкодера для асинхронного двигателя выполняется соответствующему разъему платы ввода-вывода преобразователя частоты. Никаких дополнительных плат сопряжения не требуется.

Поддерживаются следующие типы энкодеров:

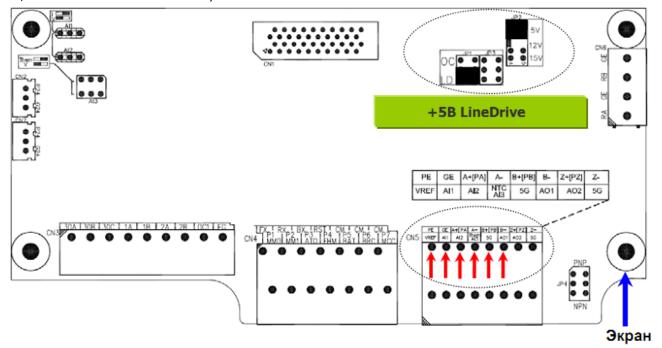
- с выходом типа открытый коллектор (а также комплиментарный, push-pull и т.п.) и питанием 15В
- с выходом типа LineDrive и питанием 5В
- При подключении энкодера необходимо проверить допускается ли вращение его вала на той же скорости, что и вращение вала двигателя.
- В случае если скорость вращения вала энкодера и двигателя различаются, либо присутствует повышенная вибрация энкодера, может не выполняться пуск двигателя, либо работа двигателя будет неустойчива.
- Подключение энкодера рекомендуется производить, используя экранированную витую пару.


Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 12

- Сигнальные провода необходимо прокладывать отдельно от силовых кабелей, так как электромагнитный шум может влиять на форму импульсов выходных сигналов энкодера.
- После подключения энкодера необходимо установить требуемые значения параметров ЧП

Перед подключением и эксплуатацией энкодера необходимо установить микропереключатели (джамперы) на плате ввода вывода. Установку необходимо выполнять при выключенном преобразователе частоты.

Подключение энкодера с типом выхода «Открытый Коллектор» и напряжением питания 15В (наличие проводников А-, В-, Z+, Z- не является обязательным)



Положение джамперов:

JP1 - в положение «ОС»

JP2 - в положение «15V»

Подключение энкодеров с типом выхода «LineDrive» и напряжением питания 5В (наличие проводников Z+, Z- не является обязательным)

ООО «ПневмоЭлектроСервис» Версия 2.10

Назначение клемм:

Провод энкодера	Контакт разъема CN5/2 iV5L	Назначение
Vcc	PE	Питание (+)
GND	GE	Питание (общий)
ASIG	A+(PA)	Фаза А+
ASIG_GND	A-	Фаза А-
BSIG	B+(PB)	Фаза В+
BSIG_GND	B-	Фаза В-
CASE_SHIELD	GND	Экран кабеля энкодера

Настройка параметров энкодера

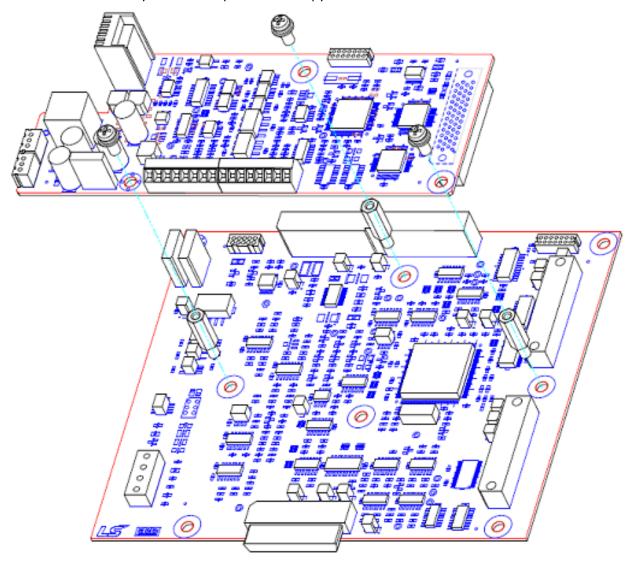
Параметр	Функция	Значение	
PAR 24	Enc Pulse	1024	
PAN_24	Количество импульсов энкодера на оборот	1024	
PAR_25	Enc Dir Set	B Phase Lead	
FAIL_23	Направление вращения энкодера	D Filase Leau	
PAR_27	Enc Scale	v1	
PAN_27	Коэффициент умножения энкодера	x1	
PRT 09	Enc Err Chk	Yes	
FK1_03	Проверка подключения сигналов энкодера	163	
PRT 10	Enc LPF	1 ms	
PK1_10	Низкочастотный фильтр для сигналов энкодера (для исключения помех)	1 1112	
PRT 11	EncFaultTime	0 sec	
LIVI_11	Проверка правильности подключения энкодера. *1) Контрольное время.	0.360	
PRT_12	EncFaultPerc	25 %	
FN1_12	Уровень скорости для теста (в процентах от максимальной скорости).	23 %	

Примечание: тест считается выполненным если при первом запуске в течении времени выставленного в PRT_11 была достигнута скорость указанная в PRT_12. Значение 0 в PRT_11 – проверка выключена.

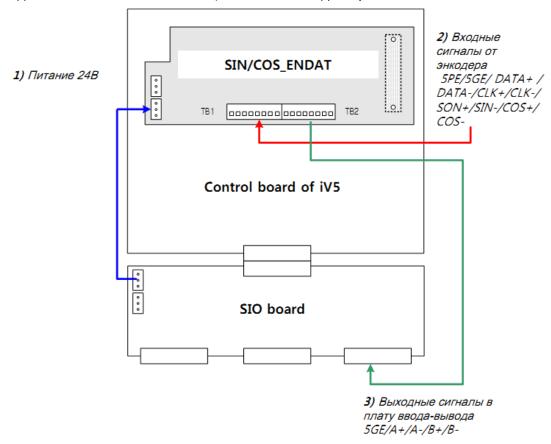
2.6.2. Подключение энкодера для синхронного двигателя

Поддерживаются следующие типы энкодеров:

- с выходом типа EnDat (Heidenhain ECN 413 или ECN 1313)
- с выходом типа SinCos (Heidenhain ERN 487 или ERN 1387)
- с выходом типа открытый коллектор (а также комплиментарный, push-pull и т.п.) и питанием 15В (необходим энкодер с высоким разрешением: порядка 8000имп/об).
- с выходом типа LineDrive и питанием 5В (необходим энкодер с высоким разрешением: порядка 8000имп/об).


Поддержка инкрементальных энкодеров обеспечивается без дополнительных плат (аналогично энкодеру для асинхронного двигателя, см. п.2.6.1)

Поддержка энкодеров Heidenhain обеспечивается при установке дополнительной платы SinCos EnDat.


Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

Установка платы SinCos EnDat

Выкрутите три винта на плате процессора и вкрутите туда шестигранные стойки из комплекта платы SinCos EnDat. Установите плату в слот и закрепите ее выкрученными из платы винтами.

1) Присоедите прилагаемыми кабелями питание платы к шине 24В и выход энкодера с платы SinCos EnDat ко входу инкрементального энкодера на плате ввода-вывода как показано на рисунке (соединительный кабель выхода энкодера с платы присоединяется между одинаковыми клеммами A+ к A+, 5GE к 5GE и так далее).

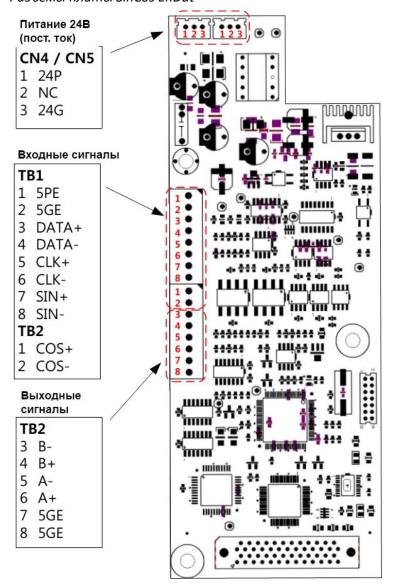
2) Джамперы энкодера на плате ввода-вывода должны быть выставлены (при выключенном преобразователе частоты):

JP1 - в положение «LD»

JP2 - в положение «5V»

Подключение энкодера к плате SinCos EnDat

Энкодер подключается к входам разъема ТВ1/ТВ2 в соответствии с рисунком и следующей таблипей:


таолицеи:		1
Вход платы	Сигнал энкодера SinCos ^{*1}	Сигнал энкодера EnDat ^{*2}
5РЕ (все три входа с данной	+5V	+5V
маркировкой на плате соединены		
между собой и равноправны)		
5GE	0V	0V
SIN+	A+	A+
SIN-	A-	A-
COS+	B+	B+
COS-	B-	B-
DATA+		DATA+
DATA-		DATA-
CLOCK+		CLOCK+
CLOCK-		CLOCK-

Примечания:

- *1 сигналы C+, C-, D+, D-, R+, R- (при их наличии) не подключаются, а проводники изолируются.
- *2 если линии питания +5V и 0V дублируются, то следует присоединить к соответствующим клеммам оба проводника.

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 16

Разъемы платы SinCos EnDat

Настройка преобразователя частоты с платой SinCos EnDat

Параметр	Функция	Значение
PAR_24	Enc Pulse Количество импульсов энкодера на оборот	2048
PAR_25	Enc Dir Set Направление вращения энкодера	B Phase Lead
PAR_27	Enc Scale Коэффициент умножения энкодера	x1
PRT_ 09	Enc Err Chk Проверка подключения сигналов энкодера (при наличии платы SinCos EnDat проверяется подключение данной платы)	Yes
PRT_10	Enc LPF Низкочастотный фильтр для сигналов энкодера (отключается для повышения скорости отклика и повышения качества движения)	0 ms
PRT_11	EncFaultTime Проверка правильности подключения энкодера. * ¹⁾ Контрольное время.	0 sec
PRT_12	EncFaultPerc Уровень скорости для теста (в процентах от максимальной скорости).	25 %

Установка параметров для энкодера SinCos (ERN 487, ERN 1387)

Параметр	Функция	Значение
PAR 23	Enc Type	SinCos
1 711_23	Тип энкодера	5111003

Установка параметров для энкодера EnDat (ECN 413, ECN 1313)

Параметр	Функция	Значение
PAR 23	Enc Type	EnDat
FAN_23	Тип энкодера	LiiDat
DAD 26	EnDat Dir	CW *1
PAR_26	Направление вращения для EnDat	CVV
DDT OO	EnDat Func	0011 *2
PRT_08	Проверка наличия сигналов SinCos/EnDat	0011

- *1 Направление EnDat должно соответствовать направлению энкодера выставленному в PAR_25. Для большинства лебедок B phase lead — CW (A Phase Lead — CCW).
- *2 Назначение битов в параметре PRT_08 (единица обозначает включение функции, 0 выключение, младший бит справа):
 - Бит 0 проверка подключения сигналов шины EnDat (CLOCK и DATA), если сигналов нет, то выдается ошибка EnDat Error
 - Бит 1 проверка подключения сигналов SinCos, если сигналов нет, то выдается ошибка SinCos Open
 - Бит 2 включение автоматического выполнения тюнинга положения полюсов и тюнинга энкодера после срабатывания сброса ошибок срабатывания защит преобразователя частоты (только для энкодеров EnDat)
 - Бит 3 включение автоматического выполнения тюнинга положения полюсов и тюнинга энкодера после отключения питания (только для энкодеров EnDat)

Выполнение тестирования положения полюсов/энкодера (тюнинг энкодера)

Для корректного управления синхронным двигателем с постоянными магнитами на роторе преобразователь частоты должен точно знать взаимное положение полюсов/магнитов. Для этого выполняется тестирование положения полюсов (тюнинг энкодера).

Тестирование выполняется в ходе первого запуска.

При этом, перед стартом слышны посторонние звуки (стук/гул), возможет откат, а после запуска на малых скоростях возможны шум и вибрация. При последующих запусках данный эффект пропадет. Для успешного выполнения теста достаточно движения на небольшое расстояние (один поворот вала лебедки).

В случае энкодера типа SinCos такое тестирование выполняется каждый раз после возникновения ошибок преобразователя частоты.

В случае энкодера EnDat параметры теста сохраняются в памяти энкодера и тест выполняется один раз — вручную (для выполнения автоматического теста без участия персонала смотри параметр PRT_08 указанный выше).

Параметры тюнинга энкодера:

Параметр	Функция	Значение
PAR_42	ReDet Number Частота выполнения тестирования (ноль для энкодера SinCos обозначает тест после сбоев и выключения питания)	0
PAR_43	Det Ave Num Количество замеров при тесте (не рекомендуется ставить менее 5)	5
PAR_44	MagDet Volt Напряжение при тесте	60
PAR_45	MagDet Curr Ток при тесте	40%

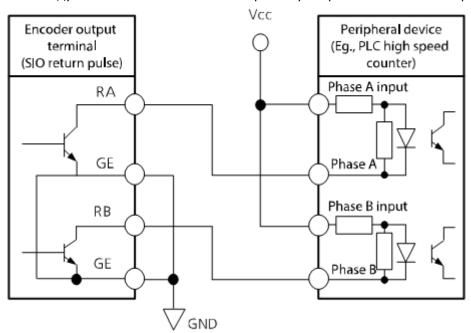
Для выполнения тестирования энкодера SinCos достаточно просто включить движение в любом направлении.

Для выполнения ручного тюнинга энкодера EnDat необходимо в параметре PAR 27 выставить Yes и произвести запуск лифта в любом направлении (после этого запуска параметр автоматически сбросится в No – для повтора теста необходимо снова выставить Yes).

После выполнения теста необходимо снова произвести пробный запуск в любом направлении. Если движение идет без сбоев, то тюнинг энкодера выполнен успешно. Если будет срабатывание защиты Spd Dev Err, то тюнинг энкодера не прошел.

Для энкодера EnDat следует изменить значение PAR 26 EnDat Dir на противоположное и повторить тюнинг энкодера и пробный запуск.

Если и повторный тюнинг энкодера не завершился успешно, либо если не получилось выполнить тюнинг энкодера SinCos, то проверьте подключение энкодера и его кабель (включая все разъемы).


2.6.3. Повторитель энкодера

На плате ввода вывода преобразователя частоты имеется встроенный повторитель сигналов энкодера (без делителя).

Выходы RA/GE/RB/GE (RA и RB выходы фазы A и фазы B, GE – общий).

Тип выхода: открытый коллектор, 24В/100мА.

Рекомендуется использование витой пары с экранированием. Сечение проводников 0,2-0,8мм².

При работе с асинхронным двигателем с энкодером на выходе повторителя будут импульсы энкодера (с разрешением равным разрешению энкодера).

При работе с энкодером SinCos или EnDat разрешение на выходе будет составлять 2048имп/об.

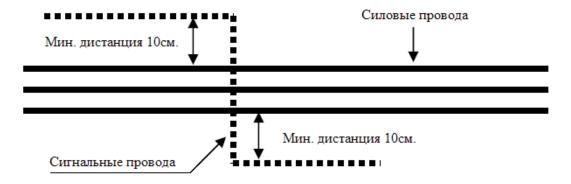
Если требуется повторитель энкодера с делителем рекомендуется использовать опционную плату повторителя энкодера.

2.7. Подключение сигнальных кабелей

(см. Приложение «Б», Приложение «Г»)

2.7.1. Прокладка кабелей

Преобразователь частоты типа iV5L имеет многоступенчатую защиту входов от помех включающую:


LC фильтр по каждому входу

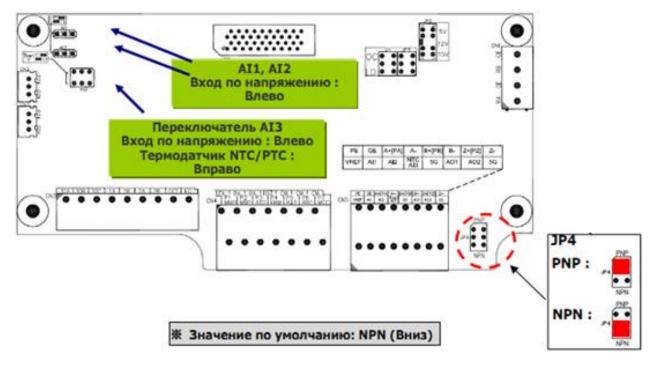
Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 19

- Опторазвязку по каждому входу
- Программный фильтр высокочастотных помех

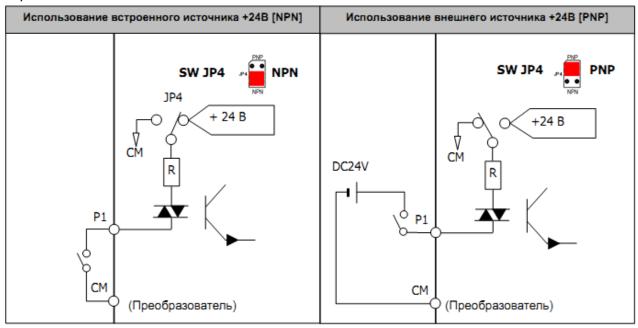
Тем не менее, во избежание различных помех и ложных сигналов следует обратить внимание на следующие рекомендации (особенно в части прокладки кабелей):

- Для сигнальных проводов рекомендуется использовать экранированные кабели.
- При прокладывании сигнальных проводов на большую дистанцию необходимо использовать экранированные кабели с витыми парами.
- Толщина сигнальных проводов должна быть в диапазоне 0.2 0.8 мм² (18^2 6AWG)
- При подключении сигнальных проводов необходимо обеспечить их надежный зажим.
- Сигнальные кабели или отдельные сигнальные провода должны прокладываться отдельно от силовых питающих проводов. В случае если сигнальный провод пересекает силовой, это пересечение должно выполняться под углом 90град (см. рис.).

Выполните подключение сигнальных кабелей в соответствии со схемой для соответствующей станции управления (см. Приложение «В»)


2.7.2. Определение типа управления входами

Преобразователь частоты серии iV5L поддерживает подачу сигналов на свои входы как с положительной логикой PNP (с питанием от внешнего источника питания), так и с отрицательной логикой NPN (с питанием от внутреннего источника питания преобразователя частоты).


Тип используемой логики выставляется джампером в правом нижнем углу платы ввода вывода

Переключение данного джампера должно производиться при выключенном питании преобразователя частоты.

ООО «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Использование различных источников питания входов при обоих положениях джампера показано на рисунке.

2.7.3. Назначение и настройка цифровых входов преобразователя частоты серии iV5L

Клемма	Назначение		
FX	Запуск в прямом направлении (вверх)		
RX	Запуск в обратном направлении (вниз)		
BX	Запрет движения		
RST	Сброс ошибок преобразователя частоты		
P1-P7			
CM	Общая клемма для входов		

Параметры настройки входов:

Параметр	Функция	НКУ МППЛ/Лира	МСУ Олимп	ул/укл	уэл/шулм	Союз
DIO_01	P1 Define Назначение входа P1	Speed L	Speed L	Speed L	Speed L	Speed-L
DIO_02	P2 Define Назначение входа P2	Speed H	Speed M	Speed M	Speed M	Speed-M
DIO_03	P3 Define Назначение входа P3	Speed M	Speed H	Not used	Battery Run	Speed-H
DIO_04	P4 Define Назначение входа P4	Xcel L	Battery Run	Not used	Not used	Jog Speed
DIO_05	P5 Define Назначение входа P5	Battery Run	Not used	Not used	Not used	Xcel-L
DIO_06	P6 Define Назначение входа P6	Jog Speed	Not used	Not used	Not used	Ext Trip-B
DIO_07	P7 Define Назначение входа P7	Not used	Not used	Not used	Not used	Battery Run
DIO_08	Neg Func. In Инверсия цифровых входов (каждый бит справа налево соответствует входу FX, RX, BX, Rst, P1, P2P7)	00000000000 (*1,2)	00100000000	00100000000	00100000000	00000000000

ООО «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

Параметр	Функция	НКУ МППЛ/Лира	МСУ Олимп	УЛ/УКЛ	УЭЛ/ШУЛМ	Союз
DIO_09	Terminal LPF Программный фильтр импульсных помех для входов (кроме ВХ)	5ms	5ms	5ms	5ms	5ms
FUN_01	Run/Stop Src Задать команды Run/Stop со входов FX, RX. Наличие сигнала — движение в необходимом направлении, отсутствие — снижение скорости до нуля по заданной рампе.	Terminal 1	Terminal 1	Terminal 1	Terminal 1	Terminal 1
FUN_20	Jog Speed	0.1rpm				

Примечания:

- (*1) Для НЗ контактов тормоза второй бит справа установить в ноль (например 0000000000). Для НО контактов установить его в единицу (например 0000000010)
- (*2) При наличии эвакуатора, если сигнал на вход P6 (Battery Run) формируется через H3 контакт на блокировке БМ03 между контакторами K1 и K4 (новый вариант с сентября 2015г.) третий бит справа установить в единицу (например 00000000100). Если сигнал эвакуации формируется через открытый допконтакт на блоке ПК03-01-11 (старый вариант, ставится сверху контактора), то третий бит справа ставится в ноль (например 0000000000).

Матрица скоростей:

Тремя программируемыми входами можно задать до 8 скоростей.

Скорость (номер параметра)	Speed L	Speed M	Speed H
Speed 0 (FUN_12)	0	0	0
Speed 1 (FUN_13)	1	0	0
Speed 2 (FUN_14)	0	1	0
Speed 3 (FUN_15)	1	1	0
Speed 4 (FUN_16)	0	0	1
Speed 5 (FUN_17)	1	0	1
Speed 6 (FUN_18)	0	1	1
Speed 7 (FUN_19)	1	1	1

Для лифтов могут быть использованы следующие скорости:

- нулевая (используется некоторыми станциями при останове)
- большая (номинальная скорость лифта, обычно равна номинальной скорости двигателя)
- малая/ревизии (примерно 0,3м/с)
- дотягивания (около 0,1м/с)
- цокольного этажа (если он короткий)
- промежуточная (используется некоторыми станциями например для движения на один этаж при лифтах с номинальной скоростью 1,6м/с и выше)
- скорость эвакуации (примерно равна скорости дотягивания)
- выравнивания положения лифта на этаже (примерно 0,02м/с)

Назначение скоростей для различных станций управления

Скорость (номер параметра)	НКУ МППЛ/Лира	МСУ Олимп	ул/укл	уэл/шулм	Союз
Speed 0 (FUN_12)	Нулевая	Нулевая	Открытия тормоза	Открытия тормоза	Дотягивания (0,05м/c)
Speed 1 (FUN_13)	Дотягивания	Большая	Дотягивания	Ревизии	Малая (0,2м/с)
Speed 2 (FUN_14)	Ревизии	Дотягивания	Ревизии	Дотягивания	Ревизии

 ООО «ПневмоЭлектроСервис»
 Версия 2.10

 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru
 Страница 22

Скорость (номер параметра)	НКУ МППЛ/Лира	МСУ Олимп	ул/укл	уэл/шулм	Союз
Speed 3 (FUN_15)	Выравнивания		Большая	Большая	50% большой
Speed 4 (FUN_16)	Большая				60% большой
Speed 5 (FUN_17)					70% большой
Speed 6 (FUN_18)	Промежуточная	Ревизии			80% большой
Speed 7 (FUN_19)	Цокольного этажа (корот.)				Большая
Jog Speed (FUN_20)					Дотягивания

Матрица ускорений:

Двумя программируемыми входами можно задать до четырех рамп ускорения/замедления

Скорость (номер параметра)	Xcel L	Xcel H	
Acc Time 1 (FUN_41)	0	0	
Dec Time 1 (FUN_42)	0	0	
Acc Time 2 (FUN_43)	1	0	
Dec Time 2 (FUN_44)	1	0	
Acc Time 3 (FUN_45)	0	1	
Dec Time 3 (FUN_46)	0	1	
Acc Time 4 (FUN_47)	1	1	
Dec Time 4 (FUN_48)	1	1	

2.7.4. Настройка аварийного сигнала/запрета движения/STO

Запрещается отсоединять сигнал данного назначения от преобразователя частоты или станции!

Исключение такого сигнала может привести к сгоранию оборудования и/или травмированию и гибели людей.

Существует несколько вариантов подачи такого сигнала в зависимости от алгоритмов используемых станцией и используемых схемотехнических решений.

Наиболее предпочтительным является использование специального входа ВХ или задействование входов STO.

Сигнал ВХ

При подаче данного сигнала преобразователь частоты пытается остановить двигатель в течении времени выставленном в параметре FUN_51 BX Time. По истечении указанного времени преобразователь полностью отключает все свои силовые выходы, отправляя двигатель на свободный выбег, а также отключает все цифровые и аналоговые выходы. Если в данном параметре выставлено 0.0с, то отключение производится мгновенно. Заводская установка значения данного параметра 0.0с.

Чтобы обеспечить возможность максимально быстрой реакции преобразователя частоты на формирование данного сигнала программный фильтр для сигнала ВХ (аналогичный используемому для остальных входов) вынесен в отдельный параметр FUN_52 ВХ Termi LPF. Это позволяет устранить задержку до 5мс связанную с работой фильтра.

Для некоторых синхронных лебедок (особенно цилиндрических) не рекомендуется использовать мгновенное отключение силовых выходов, так как это может приводить к сильному электромагнитному удару в лебедке (были случаи осыпания магнитов ротора лебедок при длительном использовании в таком режиме). Установка даже минимальной задержки 0.1с в параметре FUN_51 BX Time устраняет данную проблему.

ООО «ПневмоЭлектроСервис» Версия 2.10

Пока данный сигнал не будет снят, преобразователь частоты не будет выполнять никакие сигналы связанные с движением или снятием тормоза, включением контактора.

При снятии сигнала преобразователь частоты будет немедленно готов к работе.

Наличие сигнала BX не влияет на выходной сигнал готовности преобразователя частоты (аварийное реле в положении что ошибок нет), Inv Ready будет выдавать сигнал готовности.

Наличие сигнала BX визуально контролируется по мигающему красному индикатору внизу и буквам BX в правом верхнем углу панели (в режимах с энкодером).

Для реализации инверсного сигнала «разрешение работы» сигнал ВХ может быть инвертирован путем установки в «1» девятого бита в параметре DIO_08 Neg Func. In, то есть установкой там значения «0010000000».

Параметр	Функция	Значение по умолчанию
FUN 51	BX Time	0.0c
LOIN 21	Время отключения при получении сигнала ВХ	0.00
ELINI E2	BX Termi LPF	Ones
FUN_52	Постоянная фильтра для входа BX	Омс
DIO 08	Neg Func. In	0000000000
010_08	Инверсия входов (входу ВХ соответствует третий символ слева)	0000000000

Вход STO

Данный вход предназначен для безопасного отключения момента в соответствии с требованиями стандартов EN 81, EN61508, SIL2 (EN13849-1).

Работа данного входа основана на подаче питания с клеммы SC на две клеммы SA и SB. Две клеммы обеспечивают дублирование защитной функции. Если реле безопасности разомкнуто, выходы инвертора отключаются, и формируется ошибка "SAFETY A" (или В). Если перед размыканием реле осуществлялось движение, то выходы сразу отключаются и двигатель отправляется на свободный выбег вне зависимости от режима замедления выставленного в FUN_03 Stop mode.

При прерывании питания на клемму SA выходной ШИМ сигнал блокируется на внутреннем контроллере. При прерывании питания на клемму SB останавливается внутренний буфер ШИМ инвертора и блокируются выходы ШИМ буфера.

Возможна работа входа STO в двух режимах:

Параметр	Функция	Возможные значения	Значение по умолчанию
PRT_34	STO Type Selection Выбор типа выхода безопасного отключения момента (STO)	0 (Latch) 1 (Level)	Latch

Latch (защелка) - для сброса ошибки требуется замкнуть реле и выполнить сброс ошибки путем нажатия кнопки сброс на клавиатуре или подачей сигнала сброса (вход RST).

Level (уровень) - при замыкании реле безопасности преобразователь автоматически сбрасывает данную ошибку и восстанавливает нормальную работу.

2.7.5. Выходы преобразователя частоты

Преобразователь частоты iV5L оснащен следующими выходами (см. Приложение Б):

- аварийное перекидное реле (клеммы 30А, 30В, 30С) изменяет свое состояние при формировании ошибки преобразователя частоты
- два программируемых релейных выхода (клеммы 1A, 1B и 2A, 2B)
- программируемый транзисторный выход (клеммы OC1, EG)

Релейные выходы могут коммутировать сигнал ~250B 1A или =30B 1A

Транзисторный выход типа открытый коллектор, =24В 50мА.

ООО «ПневмоЭлектроСервис» Версия 2.10 В лифтах обычно используются следующие функции для программируемых выходов:

- Inv Ready сигнал готовности преобразователя частоты к работе
- Run силовые выходы преобразователя частоты включены
- Stop сигнал инверсный сигналу Run
- Break управление механическим тормозом
- MC On/Off управление выходным контактором
- Zero Speed Detection определение нулевой скорости

Управление аварийным реле

Параметр	Функция	Значение по умолчанию
DIO 16	Relay mode	011
DIO_16	Режим работы аварийного реле	011

Бит 0 (правый) – реагирование на ошибку пониженного напряжения

Бит 1 – остальные ошибки

Бит 2 – мгновенный автоматический рестарт двигателя при снятии ошибки (в том числе на ходу)

Параметры связанные с управлением программируемыми выходами

·	у при	
Параметр	Функция	Значение по умолчанию
	Neg Func. Out	
DIO_10	Инверсия программируемых выходов (выходам АХ1, АХ2, ОС1	000
	соответствуют биты слева направо)	
DIO 11	AX1 Define	Not Used
DIO_11	Назначение функции для релейного выхода AX1	Not Used
DIO 13	AX2 Define	Not Used
DIO_12	Назначение функции для релейного выхода АХ2	Not Used
DIO_13	OC1 Define	Not Used
	Назначение функции для транзисторного выхода ОС1	Not Used

Значения параметров для выходов при подключении к станциям управления:

Номер параметра	НКУ МППЛ/Лира	МСУ Олимп	УЛ/УКЛ/УЭЛ/ШУЛМ	Союз
DIO_11	Break Output	Break Output	Break Output	Break Output
DIO_12	MC On/Off	MC On/Off	Run	Inv Ready

Настройка параметров управления механическим тормозом

Параметр	Функция	Рекомендуемое значение
DIO_31	BKOpen Time Время открытия тормоза (после подачи команды на открытие тормоза преобразователь частоты будет поддерживать заданную скорость не начиная разгон)	0.20c
DIO_32	BKOpen Speed Скорость, которая будет поддерживаться при открытии тормоза	0.0об/мин
DIO_33	Release Curr Ток при котором будет подана команда на открытие тормоза	20.0%
DIO_36	BKClose Speed Скорость, при достижении которой будет подана команда на закрытие тормоза	0.0об/мин
FUN_54	Hold time Время удержания. Преобразователь частоты не будет отключать выходы указанное время, чтобы механические тормоза успели зафиксировать вал.	600мс

Первые четыре параметра отображаются только если одному из выходов назначена функция управления тормозом.

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 25 Настройка параметров управления выходным контактором

Параметр	Функция	Рекомендуемое значение	
	MC Timer On		
DIO 38	Задержка после включения контактора (после подачи	100мс	
DIO_28	команды на включение контактора преобразователь частоты	TOOMC	
	не будет подавать напряжение указанное время)		
DIO 30	MC Timer Off	300	
DIO_29	Задержка перед выключением контактора	200мс	

3. Ввод параметров двигателя, автотюнинг двигателя

3.1. Ввод параметров двигателя

Выставить параметры двигателя руководствуясь заводской табличкой на двигателе и/или заводской документацией производителя лебедки.

· · · · · · · · · · · · · · · · · · ·	заводскои документациеи производителя леоедки.			
Параметр	Функция	Примечание		
PAR_09	Motor select Выбор двигателя из предложенного списка или установка ручного ввода параметров	Выбираем ручной ввод параметров – User Define		
PAR_10	User motor select Мощность двигателя в кВт	Отображается только если в PAR_09 выбрано User Define		
PAR_13	Base frequency Частота при номинальной скорости вращения для режима компенсации скольжения (Гц)	Выставляем 50Гц		
PAR_14	Base speed Частота вращения, (об/мин) для режимов с энкодером	Для асинхронного двигателя ставим синхронную скорость (без учета скольжения, например 1500об/мин)		
PAR_15	Rated voltage Номинальное напряжение, В	С заводской таблички двигателя		
PAR_16	Pole Number Количество полюсов	Если не указано то вычисляем по формуле: Частота*120/скорость вращения		
PAR_17	Efficiency КПД, %	Если нет данных оставляем значение по умолчанию		
PAR_18	Rated Slip Скольжение (об/мин для режима Speed или Гц для режима компенсации скольжения)	Только для асинхронного двигателя. Равняется разнице между синхронной скоростью и фактической.		
PAR_19	Rated Current Номинальный ток двигателя	С заводской таблички двигателя		
PAR_22	Cooling Method Метод охлаждения	Self-cool — самоохлаждение Force cool — принудительное		
PAR_57	Inertia Инерция	Для асинхронного двигателя оставить значение по умолчанию. Для синхронного двигателя: ■ Для плоской лебедки поставить 20-30 ■ Для цилиндрической — 1.0		

3.2. Выполнение автоматического тестирования параметров (автотюнинга) двигателя

Для асинхронного двигателя возможно выполнение автотюнинга как с вращением, так и без вращения. Для синхронного только без вращения двигателя.

Поскольку проведение автотюнинга двигателя с вращением возможно только при расторможенной и распасованной лебедке, и учитывая, что автотюнинг без вращения также обеспечивает достаточную точность, то проведение автотюнинга с вращением не является необходимым условием работы.

Автотюнинг без вращения производится при подключенном питании, замкнутых выходных контакторах и наложенных тормозах. По завершении процедуры автотюнинга следует выключить выходные контакторы переведя станцию управления в нормальный режим.

Тюнинг двигателя не будет выполняться при поданном сигнале ВХ. Если редактирование параметра PAR_41 AsynAuto Tune или PAR_51 SynAutoTune недоступно, то следует отключить сигнал BX на время проведения тюнинга. Для этого необходимо инвертировать сигнал BX (изменить значение третьего слева разряда в DIO_08 на противоположное, то есть, например, заменить 00000000000 на 0010000000).

Рекомендуется выполнять автотюнинг на холодном двигателе три раза подряд, фиксируя полученные значения. Если параметры существенно не отличаются, то можно считать процедуру успешной.

По завершении автотюнинга параметры определенные в его ходе могут быть, при необходимости, изменены вручную.

Параметры автотюнинга асинхронного двигателя

Параметр	Функция	Примечание	
PAR_31	Autotune type Тип автотюнига (с вращением или без)	Standstill – без вращения	
PAR_34	Inertia tune Тюнинг инерции (выполняется отдельно и только с вращением при присоединенном тормозном резисторе)	No – отключено	
PAR_35	J Spd Time	 - Параметры тюнинга инерции	
PAR_36	Inertia Lpf	Параметры понинга инерции	
PAR_41	AsynAuto Tune Запуск автотюнинга	Можно выбрать полный тест ALL1 либо тестирование отдельных параметров.	
PAR_52	Flux Current Ток намагничивания, А		
PAR_53	Tr Постоянная времени ротора		
PAR_54	Ls Индуктивность рассеяния	Параметры которые определяются в ходе автотюнинга.	
PAR_55	Lsigma Индуктивность статора		
PAR_56	Rs Сопротивление статора		
PAR_57	Inertia Coefficient Коэффициент инерции	Оставляем значение, которое будет выставлено автоматически после выбора мощности двигателя	

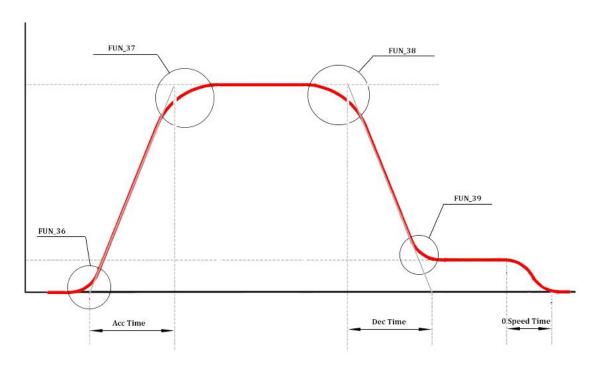
Для проведения автотюнинга надо выбрать в параметре PAR_41 ALL1 и подтвердить ввод. Процедура автотюнинга начнется. Процесс занимает несколько минут.

Параметры автотюнинга синхронного двигателя

Параметр	Функция	Примечание
PAR_31	Autotune type Тип автотюнига (с вращением или без)	Standstill – без вращения
PAR_51	SynAutoTune Включение автотюнинга	Запустить все тесты (ALL) или выполнить отдельный тест

Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

Параметр	Функция	Примечание
PAR_56	Rs Сопротивление статора	Параметры тестируемые в ходе
PAR_58	Ld Индуктивность по оси D	автотюнинга, если известны значения из документации производителя, то могут быть
PAR_59	Lq Индуктивность по оси Q	указаны вручную.
PAR_60	Init Theta Положение полюсов двигателя относительно нулевой точки	Определяется в ходе общего автотюнинга или запуском теста "Mag Pole Est" в PAR_51 или при тюнинге энкодера (описано в разделе 2.6.2)
PAR_46	TuneLvl_LdLq	Установка параметров
PAR_47	TuneHz_LdLq	— тестирования LdLq (уровень и частота)


Для проведения автотюнинга надо выбрать в параметре PAR_51 ALL и подтвердить ввод. Процедура автотюнинга начнется. Процесс занимает несколько минут.

В процессе автотюнинга может быть заметен достаточно сильный шум. Если уровень звука в виде ударов неприемлем можно попробовать его уменьшить, изменив параметры теста индуктивностей (уменьшить PAR_46). Для некоторых лебедок (цилиндрических) изменение данных параметров (например выставить PAR_46 – 20%, PAR_47 – 200%) может давать лучшие результаты, уменьшая вибрации при движении на полной скорости.

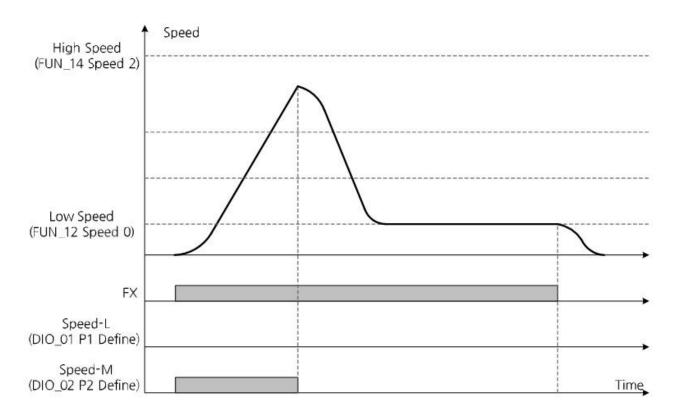
4. Настройка параметров кривой изменения скорости

4.1. Настройка кривой изменения скорости

Движение кабины может быть представлено следующей кривой

Время разгона (Acc Time) и время замедления (Dec Time/O Speed Time) задаются в секундах для ускорения с нулевой скорости до максимальной (указанной в PAR_11 Max Speed) без учета скруглений траекторий (то есть по факту время и дистанция больше).

Если ускорение/замедление выполняются в меньшем диапазоне скоростей, то время ускорения/замедления будет соответствующим образом пересчитано.


Если выставлены не нулевые скругления S-образной кривой разгона/замедления, то время разгона/замедления будет пересчитано с учетом этих скруглений и увеличится. Чем больше выставлена величина скруглений, тем большим получится время разгона/замедления.

Для обеспечения плавности останова время замедления до нулевой скорости выставляется отдельно. Включение данной опции производится в параметре FUN_49.

Параметр	Функция	Рекомендуемое значение
DAD 11	Max Speed	См. характеристики
PAR_11	Максимальная скорость	лебедки
FUN_03	Stop mode	Decel
	Метод останова	(замедление по рампе)
FUN_33	Acc/Dec Ref	Max Speed
	Метод расчёта ускорения/замедления	(от макс. скорости)
FUN_36	Acc S Start	F.00/
	Скругление начала разгона	50%
FUN 27	Acc S End	F.00/
FUN_37	Скругление конца разгона	50%
FUN 20	Dec S Start	500/
FUN_38	Скругление начала замедления	50%
FUN 20	Dec S End	500/
FUN_39	Скругление конца замедления	50%
FLIN 40	Time scale	0.01
FUN_40	Точность задания времен разгона/замедления	0.01
FLINI 41	Acc Time – 1	1 50 2 00-
FUN_41	Время разгона 1	1.50-2.00c
FUN 42	Dec Time – 1	1.00 1.50
FUN_42	Время замедления 1	1.00 – 1.50c
	Acc Time – 2	4.00 – 5.00c
FUN_43	Время разгона 2	(используется только
	Время разгона 2	некоторыми СУ)
	Dec Time – 2	0.70c
FUN_44		(используется только
_	Время замедления 2	СУ НКУ МППЛ/Лира)
FUN 45	Acc Time – 3	4.00c
FUN_45	Время разгона 3	(не используется СУ)
FUN_46	Dec Time – 3	4.00c
	Время замедления 3	(не используется СУ)
FLIN: 47	Acc Time – 4	5.00c
FUN_47	Время разгона 4	(не используется СУ)
FIIN 19	Dec Time – 4	5.00c
FUN_48	Время замедления 4	(не используется СУ)
FUN_49	Use 0 Dec Time	
	Использовать отдельную рампу для замедления до нулевой	Yes
	скорости	
FUN_50	0 Dec Time	3.00-4.00c
	Время замедления до нулевой скорости	3.00-4.000

4.2. Функция короткого этажа для скоростных лифтов

При использовании лифтов с номинальной скоростью 1,6м/с и выше, в большинстве случаев высоты этажа недостаточно для того, чтобы кабина успела выполнить разгон до полной скорости и замедление/останов. Также бывают лифты, где один из этажей имеет меньшую высоту чем остальные. Если станцией управления не предусмотрено использование промежуточной скорости при поездке на один этаж, то команда на снижение скорости поступает во время разгона и кривая движения выглядит следующим образом:

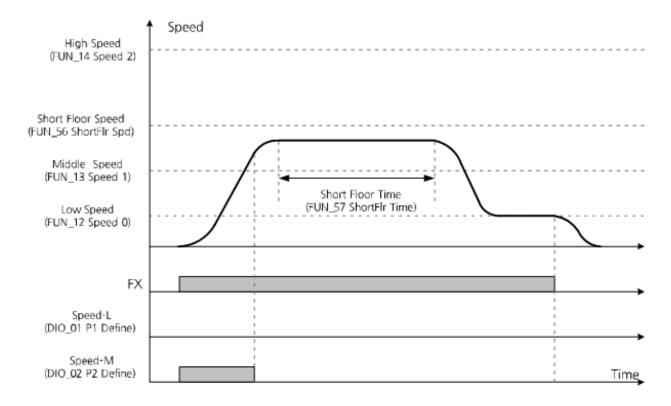
Резкий переход от разгона к замедлению понижает комфорт, и, если не предусмотрено компенсации для точки замедления, то долгому движению на скорости дотягивания (так как замедление производилось не с полной скорости и требуется меньшая дистанция для замедления до скорости дотягивания).

Для повышения комфортности поездки и компенсации дистанции в преобразователе частоты iV5Lift предусмотрена функция короткого этажа.

Параметр	Функция	Заводское значение
FUN_56	ShortFlr Spd	0.0об/мин
	Скорость короткого этажа	
FUN_57	ShortFlr Time	0.00c
	Время короткого этажа	0.000

Если время короткого этажа выставлено в значение 0.00с, то функция отключена. Для включения данной функции необходимо выставить в FUN_57 время отличное от нуля.

Алгоритм работы функции короткого этажа определяется соотношением скорости, на которой будет получена команда на замедление и выставленной скоростью короткого этажа.

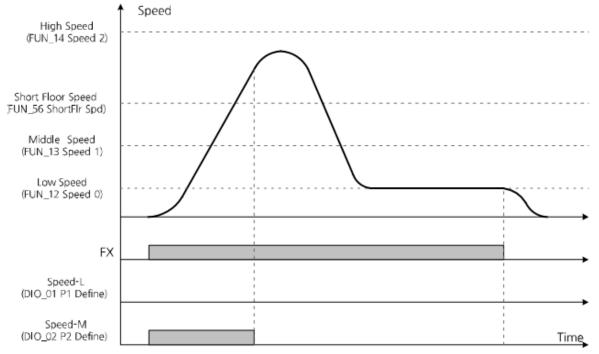

Если текущая скорость ниже чем скорость короткого этажа

При получении команды на замедление во время разгона преобразователь частоты рассчитывает новую промежуточную скорость по следующей формуле:

Промежуточная скорость = Текущая скорость + ([PAR_11] x [FUN_37])

Преобразователь частоты плавно скругляет траекторию до промежуточной скорости, двигается на промежуточной скорости время выставленное в FUN_57 и далее плавно замедляется с этой скорости до скорости дотягивания.

OOO «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru


Если рассчитанная промежуточная скорость оказывается выше, чем скорость короткого этажа указанная в FUN 56, то в качестве промежуточной скорости будет использована скорость короткого этажа.

Если текущая скорость выше чем скорость короткого этажа

При получении команды на замедление во время разгона преобразователь частоты рассчитывает новую промежуточную скорость по следующей формуле:

Промежуточная скорость = Текущая скорость + ([PAR_11] x [FUN_37])

Преобразователь частоты плавно скругляет траекторию до промежуточной скорости и далее плавно замедляется с этой скорости до скорости дотягивания.

Настройку работы данной функции смотри в разделе 9 «Рекомендации по настройке».

5. Настройка режима работы (контроля скорости)

5.1. Настройка режима работы для асинхронного двигателя с энкодером

Применяется векторный режим с замкнутым контуром. Используются следующие параметры:

Параметр	Функция	Рекомендуемое значение
PAR_07	Control mode Режим регулирования	Speed
PAR_08	Application Применение	General vect
FUN_53	PreExct time Время предварительного намагничивания	500мс
CON_03	ASR P Gain 1 Пропорциональный коэффициент 1 автоматического регулятора скорости	100%
CON_04	ASR I Gain 1 Интегральный коэффициент 1 автоматического регулятора скорости	300мс
CON_05	ASR LPF 1 Фильтр 1 автоматического регулятора скорости	70мс ^{*1}
CON_06	ASR P Gain 2 Пропорциональный коэффициент 2 автоматического регулятора скорости	150%
CON_07	ASR I Gain 2 Интегральный коэффициент 2 автоматического регулятора скорости	20мс
CON_08	ASR LPF 2 Фильтр 2 автоматического регулятора скорости	Омс
CON_09	ASR FF Gain Предотвращение перелетов по скорости	0%
CON_10	ASR Ramp Продолжительность перехода между наборами настроек ПИ автоматического регулятора скорости	400мс
CON_11	Target Speed Скорость, по достижению которой, меняются настройки ПИ регулятора	15.0об/мин ^{*2}

Примечания

*2: Второй набор настроек ПИ регулятора автоматического регулятора скорости используется при старте для предотвращения отката. На небольших двигателях и лифтах грузоподъемностью 400кг тормозящего момента редуктора лебедки достаточно для торможения кабины и отката нет. В то же время, в силу меньшей инерции механизма, перерегулировать двигатель легко. Поэтому рекомендуется отключить второй набор настроек выставив в CON_11 значение 0.00б/мин.

Указанный набор настроек (с учетом примечания 2) применим для абсолютного большинства электродвигателей. В отдельных случаях может потребоваться коррекция настроек ПИ регулятора. Подробнее смотри в разделе 9 настоящего руководства.

5.2. Настройка режима работы для асинхронного двигателя без энкодера

Для асинхронного двигателя без энкодера с преобразователем iV5Lift наиболее предпочтительным является режим компенсации скольжения с использованием автоматического буста.

Данный режим обеспечивает стабильно хорошую работу привода, сочетающуюся с понятной методикой настройкой преобразователя частоты доступной практически любому персоналу.

^{*1:} Фильтр используется чтобы не усиливать естественные вибрации. Например вибрации канатов.

Уникальный режим автоматического буста обеспечивает компенсацию изменяющейся нагрузки кабины вплоть до режимов движения при загрузке выше 110% от номинальной.

5.2.1. Общие настройки

Используются следующие параметры:

Параметр	Функция	Рекомендуемое значение
	·	No
PRT_09	Enc Err Chk	Выключить во избежание
	Тест энкодера	ошибки
PAR_07	Control mode	Sleen Comp
	Режим регулирования	Sleep Comp
PAR_08	Application	General vect
	Применение	General vect
PAR_12	Min Speed	0.01Гц
	Минимальная скорость	0.011 ц
	Torque boost	
CON_41	Буст момента (значение авто обозначает использование суммы	Auto
	ручной уставки и автоматической)	
CON_42	Fwd boost	2.0%
CO11_42	Буст при движении вверх	2.070
CON_43	Rev boost	2.0%
CON_43	Буст при движении вниз	2.070
CON_45	ATB Filter	50мс
CON_43	Фильтр автоматического усиления момента	Joine
	GainAtbM	
CON_46	Максимальный уровень для автоматического усиления момента	50%
	при движении вверх	
	GainAtbG	
CON_47	Максимальный уровень для автоматического усиления момента	50%
	при движении вниз	
CON_63	SlipCompFreq	10Гц
	Частота для пересчета компенсации скольжения	-3.4
	SlipGain_MH	
CON_64	Величина компенсации скольжения при движении в режиме	100%
	нагрузки на частотах выше CON_66	
	SlipGain_GH	
CON_65	Величина компенсации скольжения при движении в режиме	50%
	генератора на частотах выше CON_66	
CON_66	SlipGainFrq	8Гц
	Частота для смены значений величины скольжения	- '
	SlipGain_ML	
CON_67	Величина компенсации скольжения при движении в режиме	50%
	генератора на частотах выше CON_66	
CON_68	SlipGain_GL	250
	Величина компенсации скольжения при движении в режиме	25%
	генератора на частотах выше CON_66	
CON_69	Slip Filter	100мс
_	Фильтр для расчета скольжения	

Установку и настройку параметров выполнять согласно рекомендаций изложенных в разделе 9 настоящего руководства.

5.2.2. Старт/стоп с постоянного тока

Поскольку при отсутствии обратной связи привод не может устойчиво и с достаточной точностью контролировать момент в зоне околонулевых скоростей в данном режиме используется трогание и

останов с подачей постоянного тока. Таким образом, достигается удержание двигателя на нулевой скорости на период, пока отпускается и накладывается механической тормоз.

Параметры управления подачей постоянного тока:

Параметр	Функция	Рекомендуемое значение
FUN_03	Stop mode Режим останова	DCBrake
FUN_06	DcBr Freq Частота включения торможения постоянным током	0.02Гц
FUN_07	DcBlk Time Время блокировки выходов перед включением постоянного тока	0.0c
FUN_08	DcBr Value Величина тока при торможении постоянным током	100%
FUN_09	DcBr Time Время торможения постоянным током	0.6c
FUN_10	DcSt Value Величина постоянного тока при старте	100%
FUN_11	DcSt Time Время подачи постоянного тока при старте	0.6c
DIO_30	BK On Delay Задержка перед выдачей команды на открытие механического тормоза	0.3c
DIO_31	BKOpen Time Время открытия механического тормоза	0.01c*
DIO_34	BK Off Delay Задержка перед выдачей команды на закрытие механического тормоза	0.0c
FUN_50	0 Dec Time Время замедления до нулевой скорости	4.0c

Примечание * - поскольку при старте открытие механического тормоза производится в момент удержания постоянным током, то параметр DIO_31 следует выставить в минимально возможную величину.

5.2.3. Регулятор против колебаний тока (AHR)

При работе преобразователя частоты в режиме компенсации скольжения возможно появление колебаний тока (недостаток или перерегулирование) вызванных механическим резонансом или другими проблемами, что влияет на качество движения под нагрузкой. Использование данного регулятора позволяет устранить данную проблему.

Настройка параметров:

Параметр	Функция	Заводское значение
FUN_58	AHR Sel Включение регулятора	No
FUN_59	AHR Pgain Пропорциональный коэффициент регулятора	3.00
FUN_60	AHRLow Freq Нижняя граница работы регулятора	3.00
FUN_61	AHRHi Freq Верхняя граница работы регулятора	60.00

5.3. Настройка режима работы для синхронного двигателя

Применяется векторный режим с замкнутым контуром. Используются следующие параметры:

Параметр	Функция	Рекомендуемое значение
PAR_07	Control mode Режим регулирования	Speed Sync
PAR_08	Application Применение	General vect
CON_02	ASR PI Ratio Коэффициент для ПИ регулятора	15-30%
CON_03	ASR P Gain 1 Пропорциональный коэффициент 1 автоматического регулятора скорости	100%
CON_04	ASR I Gain 1 Интегральный коэффициент 1 автоматического регулятора скорости	100мс
CON_05	ASR LPF 1 Фильтр 1 автоматического регулятора скорости	Омс
CON_06	ASR P Gain 2 Пропорциональный коэффициент 2 автоматического регулятора скорости	100%
CON_07	ASR I Gain 2 Интегральный коэффициент 2 автоматического регулятора скорости	20мс
CON_08	ASR LPF 2 Фильтр 2 автоматического регулятора скорости	Омс
CON_09	ASR FF Gain Предотвращение перелетов по скорости	0%
CON_10	ASR Ramp Продолжительность перехода между наборами настроек ПИ АРС	400мс
CON_11	Target Speed Скорость, по достижению которой, меняются настройки ПИ регулятора	0.0об/мин

Указанный набор настроек применим практически для всех «плоских» лебедок. В отдельных случаях может потребоваться коррекция настроек ПИ регулятора:

- Если наблюдаются повышенная вибрация, сильный шум, то следует уменьшить значение пропорционального коэффициента и/или увеличить значение интегрального коэффициента
- Если имеются большие расхождения по скорости между заданием и фактическиой величиной, имеются большие вылеты по скорости, наблюдаются колебания скорости при равномерном движении, то следует увеличивать пропорциональный коэффициент и/или уменьшать интегральный коэффициент
- Для регулирования синхронных двигателей более эффективно изменение интегрального коэффициента.

Для цилиндрических синхронных двигателей (серводвигателей), как правило, требуется выставить минимальную инерцию (PAR_57), увеличить значение CON_02 PI Ratio до значений 40-100, а также увеличить значение интегрального коэффициента для высокой скорости.

При регулировании синхронного двигателя не следует допускать значительного расхождения по скорости между заданием и фактической скоростью, так как это может привести к срыву синхронизации с последующим «взлетом» (неконтролируемым практически мгновенным набором скорости до величин выше номинальной).

Проконтролировать величину расхождения по скорости можно выставив в одном из трех параметров DIS_01, DIS_02, DIS_03 значение "Spd Dev" и включив отображение данного параметра при поездке (см. п.9.10 настоящей инструкции). Величина расхождения не должна превышать 3-5об/мин даже в моменты резких изменений скорости движения.

Не следует производить несколько коротких пусков и остановов подряд без перерывов, так как это ведет к накоплению заряда в двигателе, что также может привести к неконтролируемому старту на высокой скорости.

Для предотвращения «взлета» в преобразователе частоты iV5L предусмотрена защита: Расхождение по скорости (SpdDev). Подробное описание данной функции см. в разделе «Параметры защит» (п.7.3 настоящего руководства).

5.3.1. Функция противоотката (ARF)

Ввиду отсутствия редуктора у синхронных лебедок эффект отката гораздо более выражен и требуется очень быстрое реагирование на изменение положения вала, чтобы добиться старта без толчков и рывков.

Поэтому, для предотвращения отката кабины при старте в преобразователе частоты предусмотрена специальная функция. Параметры функции противоотката:

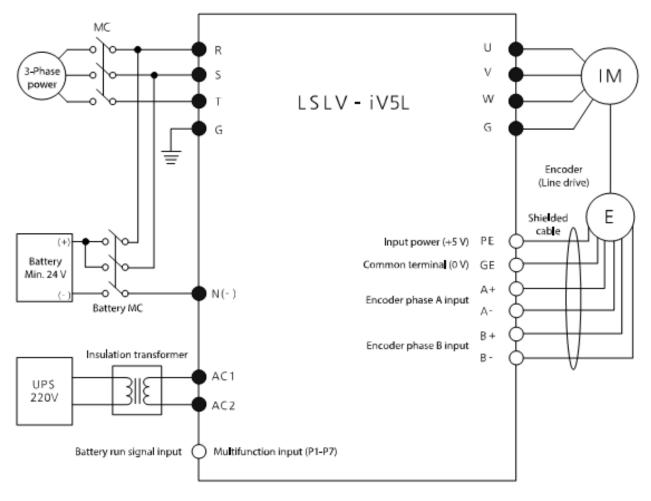
Параметр	Функция	Рекомендуемое значение
CON_71	ARF Time Время работы функции противоотката	800мс
CON_72	ARF ASR P Пропорциональный коэффициент автоматического регулятора скорости функции противоотката	100-200%
CON_73	ARF ASR I Интегральный коэффициент автоматического регулятора скорости функции противоотката	1mc
CON_74	ARF APR P Пропорциональный коэффициент автоматического регулятора позиции функции противоотката	300%

Если наблюдается посторонний шум при старте (до начала движения), то следует уменьшить CON_72. Если при значениях 50-100 шум не исчез, то следует увеличить CON_73.

При появлении отката (или нестабильном поведении) увеличивать CON_72 и/или CON_74 с шагом 50.

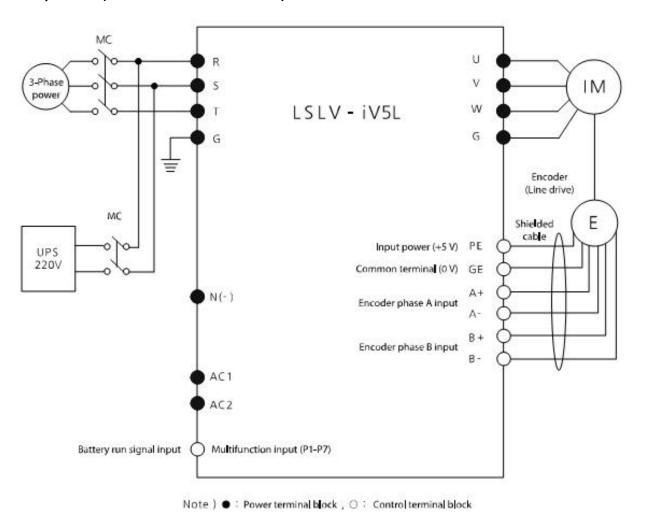
Функция противоотката не работает при проведении тюнинга энкодера, поэтому при такой поездке возможен откат.

6. Дополнительные функции для лифтов


6.1. Режим эвакуации

Для обеспечения возможности эвакуации людей из кабины при пропадании основного питания в инверторе iV5L предусмотрен режим эвакуации, когда при пропадании основного питания преобразователь частоты переключается на питание от аккумулятора или источника бесперебойного питания и обеспечивает возможность дотягивания кабины на маленькой скорости до ближайшего этажа.

ООО «ПневмоЭлектроСервис» Версия 2.10


6.1.1. Схема подключения преобразователя частоты для режима эвакуации:

Вариант 1 (с подачей питания напрямую от аккумуляторов)

Note) ●: Power terminal block , ○: Control terminal block

В данном варианте аккумуляторы подключаются напрямую к входам аккумулятора. От источника бесперебойного питания (UPS) питается только электронная схема преобразователя частоты, что позволяет использовать источник бесперебойного питания много меньшей мощности (и значительно меньшей стоимости), от которого осуществляется питание станции управления и механического тормоза. Во избежание повреждения преобразователя частоты питание электронной схемы следует выполнять через разделительный трансформатор мощностью до 100VA.

В данной схеме питание на входы подается от источника бесперебойного питания.

6.1.2. Настройки режима эвакуации

Параметр	Функция	Рекомендуемое
Параметр	Фупкции	значение
DIO_01-	Назначение одному из цифровых входов функции включения режима	Battery Run
DIO_07	эвакуации	battery Ruii
FUN_67	Batt. Speed	Скорость
FON_07	Скорость эвакуации	дотягивания
FUN_68	Batt. Volt	Подаваемое
F0N_08	Напряжение резервного питания для режима эвакуации, В	напряжение

Параметры FUN_67 и FUN_68 будут показываться только когда одному из входов будет назначена функция Battery Run.

После подачи сигнала Battery Run требуется некоторое время для снятия ошибки пониженного напряжения. Преобразователь будет готов к старту в течении примерно секунды после подачи сигнала.

Величина напряжения выставляемая в параметре FUN_68 влияет на порог срабатывания ошибки пониженного напряжения на входах. Если в процессе движения напряжение на входах упадет ниже 53% от величины указанной в FUN_68, то процесс движения будет остановлен с ошибкой пониженного напряжения.

6.1.3. Поиск легкого направления вращения (ALLS)

Использование данной функции позволяет осуществлять движение при эвакуации в направлении, в котором требуются меньшие затраты энергии.

ООО «ПневмоЭлектроСервис» Версия 2.10 Страница 38

Параметр	Функция	Заводское значение параметра
FUN_69	ALLS Enable Включение функции поиска легкого направления вращения	No
FUN_70	ALLS DirChgT Пауза между сменами направления вращения при тесте	5.0c
FUN_71	ALLS Time Время движения в каждом направлении при тесте	5.0c
FUN_72	ALLS LoadCkT Время замера тока	2.0c

При включении данной функции преобразователь частоты производит старт на скорости эвакуации сначала в прямом направлении, затем в обратном, проверяя в каком направлении движение осуществляется легче. После этого, кабина продолжит движение в направлении, при котором потреблении энергии будет меньше.

Если во время теста сигнал Battery Run будет снят, то тестирование любое движение будет мгновенно остановлено, а выходы отключены и будет сгенерирована ошибка "BatRun Fault"

Диаграмма движения если движение вверх будет легче:

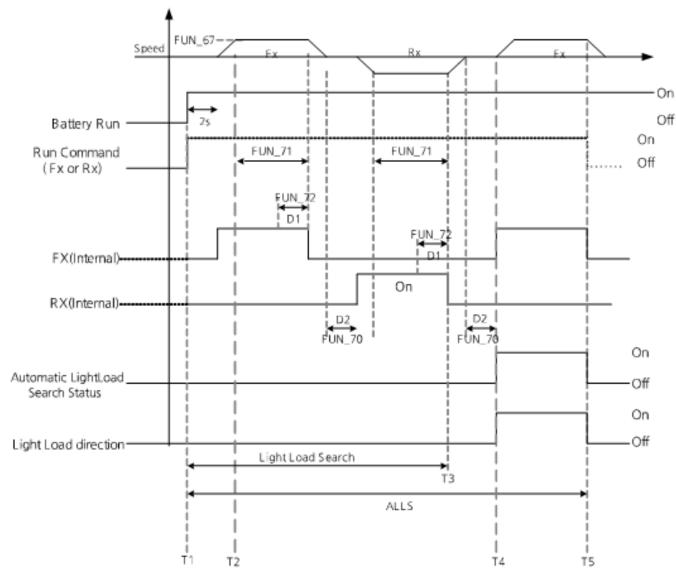
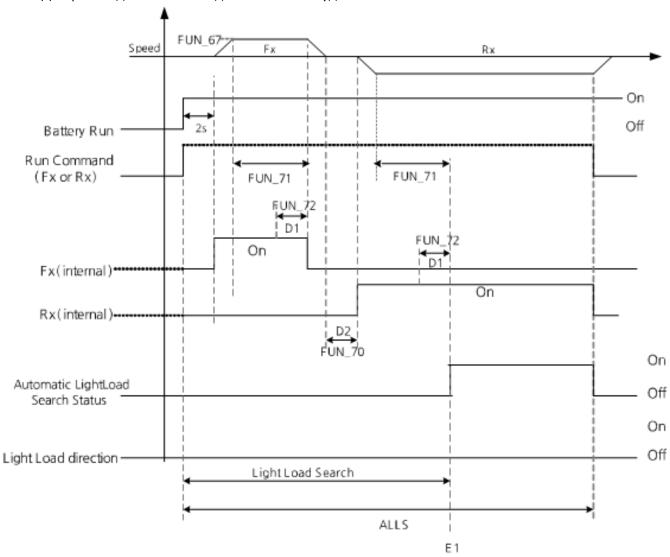



Диаграмма движения если движение вниз будет легче:

6.2. Использование весового датчика для регулирования момента

Использование весового датчика позволяет регулировать параметры движения с точным дозированием момента, что позволит оптимизировать параметры движения и бороться с откатом.

6.2.1. Подготовка для использования весового датчика

- 1. Присоединить весовой датчик с выходом 0-10В к аналоговому входу (клеммы Ai1-5G)
- 2. Убедиться что весовой датчик выдает правильные показания при работе инвертора
- 3. Выставить параметры

Параметр	Функция	Рекомендуемое значение
AIO_01	Ai1 Define	Torque Bias
AIO_01	Назначение функции аналоговому входу 1	(задатчик момента)
AIO_02	Ai1 Source	0-10B
AIO_02	Указание типа сигнала для входа	0-10B
AIO 03-10		Оставить значения по
AIO_03-10		умолчанию
	Ai1 Lpf	50мс
AIO_11	Фильтр по аналоговому входу 1	(при необходимости
	Фильтр по апалоговому входу т	подрегулировать)

OOO «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

6.2.2. Калибровка датчика

Тест с полной нагрузкой:

- 1. Отогнать кабину на нижний этаж и загрузить ее максимальной загрузкой
- 2. Выставить в качестве задания нулевую скорость и запустить лифт
- 3. Записать величину момента с основного экрана и уровень сигнала от датчика

Чтобы посмотреть уровень сигнала от датчика с основного экрана нажмите стрелку вверх для перехода к параметру DIS 01, выставьте там значение Ai1 Value и при запуске посмотрите значение показаний датчика отображаемое там.

Тест без загрузки:

- 1. Отогнать пустую кабину на верхний этаж
- 2. Выставить в качестве задания нулевую скорость и запустить лифт
- 3. Записать величину момента с основного экрана и уровень сигнала от датчика.

6.2.3. Выставление параметров

Параметр	Функция	Рекомендуемое значение
CON_37	Trq Bias Source	Analog
CON_37	Источник задания момента	(аналоговый вход)
FUN_73	Use LoadCell	V
FUN_/3	Использовать весовой датчик	Yes
FUN 74	FullLoad Trq	
F0N_74	Момент при полной загрузке	
FUN_75	FullLoad Ai	Риости зизиония
FUN_/3	Показания датчика при полной загрузке	Внести значения определенные на
FUN_76	No load Trq	
F0N_70	Момент без загрузки	предыдущем этапе
FUN 77	No load Ai	
FUN_//	Показания датчика без загрузки	

Проверить корректность подсчета момента:

Параметр	Расчет полученного значения	
AIO_06	(момент при полной загрузке – момент без загрузки)/(показания датчика при полной нагрузке – показания датчика без загрузки)	
CON_40	(момент без загрузки) – (AIO_06 * (показания датчика без загрузки))	

Для корректного подсчета для присоединения весового датчика должен быть использован аналоговый вход Аі1.

7. Параметры защит

7.1. Ограничение момента

Параметр	Функция	Рекомендуемое значение
CON_33	Torque limit source Источник ограничения максимального момента	Kpd Kpd Kpd
CON_34	Positive Torque Lim Лимит момента при движении вверх	200%
CON_35	Negative Torque Lim Лимит момента при движении вниз	200%
CON_36	Regeneration Torque Lim Лимит момента в режиме регенерации	200%

При достижении выставленного ограничения момента дальнейшее повышение момента производиться не будет. При этом, никаких ошибок в связи с достижением максимального момента не показывается.

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 41

7.2. Тепловая защита двигателя

Параметр	Функция	Рекомендуемое значение
DDT O1	ETH Select	Yes
PRT_01	Включение тепловой защиты	res
DDT 02	ETH 1min	150%
PRT_02	Предельное значение в течении 1 минуты	130%
DDT 02	ETH Continuous	100%
PRT_03	Предельное движение в продолжительном режиме	100%

7.3. Расхождение по скорости

Параметр	Функция	Рекомендуемое значение
DDT 12	SpdErrLevel	100 (для асинхр. двигателя)
PRT_13	Величина расхождения по скорости, об/мин	10 (для синхр. двигателя)*1
PRT_14	SpdErrTime	500 (для асинхр. двигателя)
	Задержка перед фиксацией сбоя, мс	30 (для синхр. двигателя)

^{*1 –} если скорость вращения двигателя существенно превышает 100об/мин на 1м/с, то значение порога следует пропорционально увеличить.

Большая величина расхождения по скорости может возникать по следующим причинам:

- Настройки ПИ регулятора не обеспечивают достаточно быстрое регулирование скорости и реакции сильно замедленны
- Проблемы с тормозами
- Проблемы с энкодером
- Накопление заряда в синхронном двигателе (например в результате некорректного управления инвертором, например наложение тормозов на ходу без активации аварийного входа или цепи безопасности преобразователя)

Выставление больших величин в данной защите может привести к «взлету» кабины при приводе от синхронного двигателя, когда лифт после некорректных действий и накопления заряда может, при очередном старте, резко и неконтролируемо начать набор скорости вплоть до величин выше номинальной скорости и кабина может пролететь несколько метров.

7.4. Проверка фаз

Параметр	Функция	Рекомендуемое значение
PRT_17	PhInOpenChk	Yes
PN1_17	Проверка входных фаз	163
DDT 10	PhInOpenLevel	3.0V
PRT_18	Уровень напряжения при проверке входных фаз	3.UV
DDT 10	PhOutOpenChk	Yes
PRT_19	Проверка выходных фаз	165

7.6. Перегрузка

Параметр	Функция	Рекомендуемое значение
PRT_22	OLT Select	Voc
PN1_22	Включение ошибки перегрузки	Yes
DDT 22	OLT Level	1000/
PRT_23	Уровень выдачи ошибки о перегрузке	180%
DDT 24	OLT Time	60c
PRT_24	Задержка выдачи ошибки о перегрузке	0 00

ООО «ПневмоЭлектроСервис» Версия 2.10

7.7. Превышение скорости

Параметр	Функция	Рекомендуемое значение
PRT_15	OvrSpd Level	110%
1111_13	Уровень превышения скорости	110/0
DDT 16	OvrSpd Time	0.00c
PRT_16	Задержка выдачи ошибки превышения скорости	0.000

8. Описание неисправностей

8.1. Просмотр ошибок

С основного экрана нажмите стрелку вниз несколько раз до появления параметра DIS 05.

Последовательным нажатием клавиши Shift можно перемещаться по следующим подпараметрам:

- Faults текущие ошибка (отображается если преобразователь частоты находится в состоянии ошибки в момент просмотра, если ошибка была сброшена, то будут прочерки)
- Last Fault 1 последняя зафиксированная ошибка
- Last Fault 2 предпоследняя зафиксированная ошибка
- Fault Count количество зафиксированных ошибок
- Fault Clear сброс счетчика и зафиксированных параметров ошибок

Если одновременно было зафиксировано несколько ошибок, то показываться будет имеющая более высокий приоритет.

Если при показе ошибки (Faults, Last Fault 1 или Last Fault 2) нажать кнопку Prog, то далее стрелками вниз/вверх можно просмотреть параметры преобразователя частоты на момент фиксации ошибки:

- Вторая зафиксированная ошибка (если было зафиксировано более одной ошибки сразу)
- SpeedRef задание по скорости в момент сбоя (скорость на конкретный момент времени рассчитанная преобразователем частоты в соответствии с нужной траекторией движения)
- SpeedF/B зафиксированная скорость в момент сбоя (по показаниям энкодера)
- Out Freq выходная частота
- IOut выходной ток
- VOut выходное напряжение
- IqeRef, Iqe расчетный и фактический ток вдоль оси Q
- Vdc напряжение в звене постоянного тока
- Terminal In состояние входов (последовательно слева-направо FX-RX-BX-P1-P2-P3-P4-P5-P6-Р7, ноль означает отсутствие сигнала, 1 – сигнал есть)
- Terminal Out состояние выходов (слева-направо: первые две цифры резерв, ОС1(транз.вых), АХ2(реле 2), АХ1(реле1), 30А/30В(аварийное реле))
- Run Status состояние преобразователя частоты в момент фиксации ошибки (Excite возбуждение двигателя, Acc – разгон, Steady – движение на постоянной скорости, Dec – замедление, Stop – останов)
- Run Time наработка в минутах на момент фиксации сбоя

8.2. Сброс ошибки

Если преобразователь частоты находится в состоянии ошибки, то ее сброс может быть произведен тремя способами:

- С клавиатуры (нажатием кнопки Reset)
- Подачей импульсного сигнала на вход Rst (срабатывание по переднему фронту импульса, но для дальнейшей работы сигнал должен быть снят)
- Автоматический сброс

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 43

Для выполнения автоматического сброса ошибок нужно настроить следующие параметры

Параметр	Функция	Возможное значение
PRT_05	Retry Number Количество попыток автоматического сброса	0-10
PRT_06	Retry Delay Задержка между попытками	0.0-60.0

Преобразователь частоты будет пытаться сбрасывать ошибку с указанной задержкой. Если ошибка возникнет снова, то счетчик оставшегося количества попыток уменьшится на единицу и преобразователь частоты снова попытается сбросить ошибку. Если количество попыток исчерпано, то преобразователь частоты не будет пытаться выполнять сброс и будет остановлен с ошибкой.

Если после сброса ошибки, в течение последующих 30 секунд работы ошибка не повторяется, то счетчик попыток будет увеличен на единицу (до восстановления значения счетчика в соответствии с величиной выставленной в PRT_05).

Автоматический сброс не применяется для следующих ошибок:

- Low Voltage
- Arm Short-U (V, W, DB)
- Fuse Open
- Ground Fault
- Fan Error (Fan malfunction)
- BatRun Fault
- Input PO
- HW-Diag
- Output PO
- InvThem OP
- MOTTHERM Err
- Encoder Err
- Over Load
- A3 Safety
- SAFETY A/B - Spd dev Err
- External-B
- Flr/FHM Data
- SDS Error
- ADC Error
- SINCOS Open
- ENDAT ERROR

8.3. Перечень ошибок

Название	Приоритет*	Описание
Over Current	4	Ток превышает заданную величину
Ground Fault	3	Зафиксирована величина утечки на землю превышающая заданную величину
Over Voltage	5	Напряжение в звене постоянного тока выше 820В
Low Voltage	9	Напряжение в звене постоянного тока ниже 360В
Over Load	12	Ток превышает выставленную величину время большее чем задержка срабатывания защиты
Inv OLT	16	Фиксация перегрузки и расчетного времени перегрева на основе обратной кривой (150% в течение минуты)
InvOver Heat	10	Перегрев инвертора
InvThem OP	19	Термистор инвертора зафиксировал слишком низкую температуру
MotOver Heat	18	Температура двигателя выше 130 градусов
MotThem Err	20	Ошибка термистора двигателя
E-Thermal	11	Зафиксированы условия перегрева двигателя
External-B	14	Получен сигнал внешней аварии (ExtTrip B)

Название	Приоритет*	Описание
Arm Short	1	Короткое замыкание по выходам (Arm Short DB отображается только
Arm Short-DB	1	на инверторах 11-22кВт)
Fuse Open	2	Сгорел предохранитель
Encoder Err	8	Нет сигналов энкодера на плате ввода-вывода
ВХ		Подан сигнал ВХ
Over Speed	21	Превышение скорости (заданная величина и время)
COM Error	-	Ошибка связи с клавиатурой
HW-Diag	13	Ошибка ЦПУ
EEP Error		Ошибка сохранения данных
FAN Error	6	Сбой вентилятора охлаждения
BatRun Fault	7	При эвакуации пропал сигнал эвакуации
Input PO	17	Обрыв входной фазы
Output PO	15	Обрыв выходной фазы
SpdDev Err	26	Расхождение по скорости между заданием и фактической величиной (превышает пределы по скорости и времени)
Low Voltage2	24	Напряжение на звене постоянного тока ниже обозначенного при работе инвертора
SAFETY A/B	25	Разомкнуты клеммы STO
A3 Safety	23	Разомкнута цепь цепи безопасности по входу АЗ Safety
ADC Error	27	Текущая калибровка не соответствует мощности преобразователя частоты
SINCOS Open	28	Отсутствуют сигналы SinCos от энкодера
ENDAT ERROR	29	Отсутствуют сигналы Clock, Data от EnDat энкодера

^{* -} Приоритет определяет порядок показа ошибок, если было зарегистрировано несколько ошибок одновременно.

9. Рекомендации по настройке и устранение проблем

9.1. Предварительные установки

Перед началом настройки все шунты замедления в обе стороны должны быть выставлены на одинаковое расстояние от уровня площадки (в обе стороны). Датчики верхнего и нижнего этажа должны быть установлены на пару сантиметров ближе к ТО крайнего этажа, чем соответствующий шунт замедления.

Шунты ТО должны быть выставлены на одинаковую длину и точка останова должна быть посредине шунта.

Вносим настройки преобразователя частоты с таблицы.

Для получения наиболее актуальных настроек под конкретную лебедку рекомендуем обратиться в техподдержку ООО «ПневмоЭлектроСервис», тел. (383)3252344, +79237002027, e-mail: skan@pes-rus.ru.

Первичную настройку преобразователя частоты и параметров движения проверяем на пустой кабине с должными мерами предосторожности.

Рекомендуется, чтобы кабина находилась не в крайних положениях по шахте.

9.2. Первые старты

Пробуем тронуться на малой скорости (скорости ревизии).

Если движение отсутствует, то:

- проверить коммутацию управляющих сигналов
- проверить что правильно выставлен тип входов джампером на плате ввода-вывода (NPN/PNP)

Переключение джампера производить только при выключенном питании преобразователя частоты.

- проверить, что сигнал BX на преобразователь частоты снимается в момент старта (в режимах с энкодером наличие данного сигнала отображается буквами BX в правом верхнем углу дисплея в постоянном или мигающем режиме)
- проверить, что на преобразователь частоты приходит команда на движение (для проверки можно стрелкой вверх с основного экрана высветить параметр DIS_03, по умолчанию, там выставлено Terminal In, смотри п.9.10).
- проверить срабатывание выходных контакторов после частотного преобразователя
- проверить растормаживание двигателя
- проверить наличие тока и момента по панели преобразователя частоты.

Если преобразователь частоты переходит в состояние ошибки и рекомендации ниже не помогают, то зафиксировать тип ошибки, параметры в момент ее возникновения (описано в главе 8) и обратиться в техподдержку.

9.2.1. Асинхронный двигатель с энкодером

Проверить подключение энкодера и положение джамперов на плате ввода/вывода

Если движение отсутствует или очень медленное и неустойчивое, то попробовать изменить направление вращения энкодера.

В параметре PAR_25 Enc Dir Set выставить A Phase lead вместо В Phase lead

9.2.2. Синхронный двигатель

Для первого запуска синхронного двигателя требуется определить положение полюсов двигателя — выполнить тюнинг энкодера — смотри описание в пункте 2.6.2 настоящей инструкции.

Наиболее частой ошибкой фиксируемой при работе с синхронным двигателем является SpdDev — несоответствие между заданием по скорости (формируемым преобразователем частоты в конкретный момент времени) и фактической скоростью. Проверяем параметры преобразователя частоты в момент ошибки (смотри п.8.1), обращая внимание в первую очередь на следующие параметры:

- SpeedRef (задание по скорости)
- SpeedF/B (фактическое значение скорости по показаниям энкодера)
- 1) Если SpeedF/B равняется 0.0rpm, а кабина при этом сдвинулась, то, вероятно, показания энкодера отсутствуют
 - Проверить подключение энкодера, его тип, наличие контакта в разъемах на кабеле энкодера (если они есть) и настройки преобразователя частоты для данного типа энкодера.
- 2) Если в SpeedF/B достаточно высокая величина, а кабина была неподвижна, либо значение SpeedF/B явно не соответствует действительности (например, при наблюдавшемся движении на скорости ревизии была зафиксирована величина скорости в несколько раз выше, либо зафиксировано движение в обратном направлении при останове, хотя визуально такого явно не наблюдалось) то причина в наличии наводок на кабель энкодера.
 - Проверить укладку кабеля энкодера (отделить его от силовых кабелей, обращая особое внимание на кабель от преобразователя частоты до двигателя и кабель к тормозному резистору), подключение экрана кабеля энкодера, отсутствие лишних петель на кабеле.

OOO «ПневмоЭлектроСервис»

Версия 2.10

- 3) При работе со станцией управления НКУ/Лира, если значение задания по скорости 0.0rpm, состояние выходов Terminal Out 000100, а фактическая скорость SpeedF/B не нулевое (и кабина действительно дернулась вверх), то причина в пробитом симисторе платы тормоза в станции управления. Проверить его целостность и при необходимости отремонтировать/заменить плату тормоза.
- 4) Если значение задания по скорости SpeedRef более 10об/мин, а SpeedF/B равняется 0.0об/мин (или очень маленькая величина около нуля), то есть две наиболее вероятных причины:
 - несоответствие направления вращения энкодера (изменить направление вращения в PAR_25, плюс PAR_26 для энкодера EnDat)
 - закрытый тормоз двигателя

причиной не срабатывания тормоза могут быть:

- механические проблемы в тормозах (залипание колодок, перекос и заклинивание колодок и т.п.)
- неисправности и ошибки в коммутации управления тормозом и т.п.
- неправильно выставленное напряжение катушек тормоза или их коммутация под имеющееся напряжение
- низкое напряжение удержания в станциях НКУ/Лира (параметр Пd/01), либо плате управления тормозом лебедок ЕПМ (регулируется потенциометром)
- 5) Если значение SpeedF/B совпадает по направлению с SpeedRef, но значительно его превышает, то значит настроены слишком сильные реакции по обратной связи. Следует увеличить значение CON_02 ASR PI Ratio и/или уменьшить пропорциональные коэффициенты для функции противоотката (также эффективным может быть увеличение интегрального коэффициента противоотката CON 73 с 1мс до 2-5мс) и основных наборов ПИ регулятора.

Если с энкодером EnDat первый запуск (с тюнингом энкодера) проходит успешно, а при втором выскакивает ошибка SpdDev, то попробовать изменить значение PAR_26 EnDat Dir на противоположное. После чего повторить тюнинг энкодера и последующий запуск.

Для большинства лебедок при PAR_25 Enc Dir Set – В Phase Lead должно быть выставлено PAR_26 EnDat Dir – CW (по часовой стрелке), а при PAR_25 Enc Dir Set – А Phase Lead должно быть выставлено PAR_26 EnDat Dir – CCW (против часовой стрелки). Но для некоторых цилиндрических лебедок ставится противоположное направление EnDat.

Если не удается устранить проблемы при старте, то рекомендуется обратиться в техподдержку.

9.2.3 Асинхронный двигатель без энкодера

Если при попытке трогания мгновенно вылетает ошибка OverCurrent, то уменьшаем значения CON_46 ATB Gain_M и CON_47 ATB Gain_G на 10% и пробуем снова.

Если ошибка OverCurrent вылетает не мгновенно, наблюдается быстрое нарастание тока (1-2с) и ошибка появляется, в основном, в верхней части шахты (при большей нагрузке), то увеличиваем значения CON_46 ATB Gain_M и CON_47 ATB Gain_G на 10% и пробуем снова пока не будет достигнуто устойчивое движение.

После выставления параметра рекомендуется проверить старт после отключения питания. Если при старте после отключения питания возникают проблемы, то следует увеличить значения CON_42 Fwd boost и CON_43 Rev boost уменьшив значение CON_46-47 до 20-30%.

9.3. Настройка времени замедления и движения на скорости дотягивания

Выставляем время замедления - FUN_42 Dec Time 1.

Перед первой поездкой на нижний этаж рекомендуется уменьшить значение времени замедления до 1.0с чтобы избежать переезда точки останова и ухода кабины в приямок.

При работе со станциями управления НКУ ПММЛ/Лира перед выполнением данной регулировки положение кабины в шахте должно быть определено. Иначе замедление производится по укороченной кривой, что дает более длительное движение на скорости дотягивания.

 ООО «ПневмоЭлектроСервис»
 Версия 2.10

 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru
 Страница 47

Не рекомендуется выполнять регулировку на крайних этажах, так как замедление может производиться не с точки замедления, а по датчику верхнего/нижнего этажа (если он установлен дальше).

Настройку делаем изменением параметра FUN_42 Dec Time 1 с шагом 0,05-0.10c

Запускаем на большой скорости на несколько этажей и смотрим время движения на скорости дотягивания перед остановом. Оптимальное время движения на скорости дотягивания должно составлять 1,5-2c.

Если время движения на скорости дотягивания велико, то увеличиваем значение FUN_42 и пробуем снова.

Если нет устойчивого движения на скорости дотягивания или оно очень мало, то уменьшаем значение FUN 42 и пробуем снова.

9.4. Выставление точки останова

Регулировку точки останова можно осуществлять передвижением шунтов ТО, но удобнее предварительно выполнить настройку преобразователем частоты, так как эта настройка будет применена сразу ко всем этажам в обоих направлениях движения. При одинаковом и точном выставлении шунтов дополнительная регулировка по шахте не понадобится (либо корректировать придется только отдельные этажи).

Для выполнения точной остановки всегда в одной и той же точке, кабина должна входить в ТО на устоявшейся скорости дотягивания. Если скорость будет колебаться (например, из-за малого времени движения на скорости дотягивания), то и точка останова будет плавать.

При наличии машинного помещения для регулировки точки останова удобнее всего выставлять метки на КВШ.

Выбираем любой удобный этаж примерно посредине шахты и производим запуск лифта в нормальном режиме сверху и снизу к этому этажу (минимум на два этажа для лебедки с номинальной скоростью движения 1.0м/с и минимум 3 этажа для лифта 1,6м/с при отсутствии энкодера). После останова отмечаем на КВШ точку останова (привязываемся к какой-либо неподвижной метке рядом с КВШ).

При движении снизу и при движении сверху точки должны совпасть.

Если точки не совпадают, то расстояние между ними это удвоенная величина, на которую кабина не доезжает или переезжает точку останова.

Если кабина не доезжает, то увеличиваем скорость дотягивания (номер параметра зависит от используемой станции управления). Если кабина переезжает точку останова, то уменьшаем скорость дотягивания.

Изменение скорости дотягивания асинхронного 4-полюсного двигателя на 10об/мин (0,33Гц) дает сдвиг точки останова примерно на 1см.

Добиваемся чтобы при движении сверху вниз и снизу вверх точки останова совпали.

При отсутствии доступа к лебедке (лифты без машинного помещения) смотрим положение кабины относительно остановочной площадки (желательно проверить на нескольких этажах и выбрать тот, где порог будет посредине при движении вверх и вниз).

Для асинхронного двигателя без энкодера необходимо дополнительно проверить точку останова при движении на один этаж (смотри п.9.9)

9.5. Выставление времени разгона

Время разгона регулируется параметром FUN 41 Acc Time-1.

Для лифтов со скоростью движения 1.0м/с и менее, удобнее настраивать время разгона так, чтобы лифт при движении на один этаж успевал разогнаться до полной скорости и двигаться на ней 1-2с.

Для лифта со скоростью движение 1,6м/с время разгона должно обеспечивать разгон лифта до полной скорости при движении на два этажа.

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 48

9.6. Выставление скорости и параметров короткого этажа

9.6.1. Для станций НКУ МППЛ/Лира:

- при наличии короткого цокольного этажа выставляем значение в FUN 19 Speed 7 обеспечивающее своевременный переход на скорость дотягивания и останов при движении с предыдущего этажа
- для останова на ближайшем этаже на лифтах с номинальной скоростью более 1м/с выставляем значение промежуточной скорости в FUN 18 Speed 6 соответствующее скорости 0,8-1,0м/с. Если наблюдается длительное или очень короткое время движения на скорости дотягивания при движении на один этаж, то корректируем статический коэффициент (параметр п1/02)

9.6.2. Для станций управления Союз (доработанный вариант)

Регулировка производится путем подстройки параметров станции управления.

9.6.3. Для остальных станций (не использующих промежуточную скорость)

Для лифтов с номинальной скоростью более 1,0м/с используем либо стандартный вариант с подбором точки замедления (предусмотренный станцией), либо, для более плавной траектории, функцию короткого этажа преобразователя частоты.

При неверных значениях параметров функции короткого этажа лифт может пропустить точку останова и уйти в переспуск или переподъем, поэтому подбор и проверку выставленных параметров следует производить с кабиной посреди шахты.

При включении функции короткого этажа не следует выполнять старт на полной скорости на этаже ближайшем к крайнему (то есть, например, запускать кабину вниз при ее нахождении между первым и вторым этажом) так как дистанция замедления в этом случае может оказаться больше расчетной. Иначе лифт может переехать ТО крайнего этажа.

Чтобы функция работала максимально эффективно, следует использовать максимально большие дистанции разгона и торможения, но при этом, лифт должен успевать разогнаться до максимальной скорости при поездке на два этажа.

Для использования функции короткого этажа следует выставить точку начала замедления в станции максимально дальней (выставив соответствующие значения компенсации для точки замедления предусмотренные в станции управления).

Не рекомендуется менять скругления кривой замедления (рекомендованное значение по 50%) так как это изменит алгоритмы расчета времени/дистанции замедления, что затруднит настройку функции короткого этажа.

Настройка функции короткого этажа:

- 1) Выполнить рекомендации указанные выше
- 2) Запустить лифт на один этаж и отследить по экрану ПЧ скорость с которой начнется замедление. Убедиться, что кабина движется на скорости дотягивания значительное время.
- 3) Выставить в параметре FUN 57 ShortFlr Time минимальное не нулевое время 0.01c
- 4) Выставить в FUN 56 ShortFlr Spd скорость процентов на 10 выше скорости, на которой приходит команда на замедление. Убедиться, что лифт успевает остановиться в нужной точке и есть видимое движение на скорости дотягивания.
- Постепенно увеличивать скорость короткого этажа (проверяя, что лифт успевает остановиться) пока не получим максимально достигаемую скорость на уровне 1м/с (либо до момента когда движение на скорости дотягивания будет менее 1с).

ООО «ПневмоЭлектроСервис» Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

6) Если фактическая максимальная скорость (по дисплею ЧП) при движении на один этаж окажется ниже выставленной скорости короткого этажа и по-прежнему наблюдается длительное движение на скорости дотягивания, то постепенно увеличиваем время короткого этажа в FUN_57 пока не будет получено движение на скорости дотягивания 1-2с (при этом учитываем, что скорость дотягивания значительно ниже и увеличение времени короткого этажа должно быть на существенно меньшее время, чем «лишнее» время, наблюдаемое на скорости дотягивания).

9.7. Особенности настройки движения для асинхронного двигателя с энкодером

9.7.1. ПИ регулятор автоматической регулировки скорости

Основой частотного регулирования при использовании обратной связи с виде энкодера являются параметры обратной связи – ПИ регулятор автоматического регулятора скорости.

В каждый момент времени (начиная со старта и заканчивая отключением силовых выводов) преобразователь частоты сравнивает значения задания по скорости в конкретный момент времени (формируется внутри ПЧ и включает поддержание заданной скорости, кривые разгона/замедления и т.п.) и значение фактической скорости (рассчитанные по показаниям от энкодера). В зависимости от полученной разницы в этих скоростях преобразователь частоты корректирует момент, который необходимо приложить для обеспечения получения нужной скорости в следующий момент времени.

Существует три основных параметра для данного регулирования:

ASR P Gain – пропорциональный коэффициент, определяет силу корректирующего воздействия

ASR I Gain — интегральный коэффициент, определяет временной промежуток за который производится усреднение имеющегося расхождения по скорости

ASR Lpf — низкочастотный фильтр, позволяет исключить реакции на короткие расхождения скорости привносимые механическими воздействиями, например вибрацию канатов (чрезмерная величина фильтра сильно замедляет реакции системы, что дает большие расхождения по скорости).

Увеличение пропорционального коэффициента дает сильные реакции на имеющиеся расхождения, что позволяет быстро их компенсировать. Но слишком большие величины коэффициента могут привести к перелетам (когда например при окончании разгона скорость превышает заданное значение) или перерегулированию (когда идут непрерывные перелеты то в одну, то в другую сторону давая попеременно меньшую или большую чем надо скорость).

Уменьшение интегрального коэффициента позволяет ускорить реакции, что позволяет точнее отслеживать изменения скорости и быстрее на них реагировать. Но, при малых величинах, преобразователь начинает реагировать на мельчайшие изменения скорости, включая те же вибрации или механические воздействия, и будет их усиливать.

Оба этих коэффициента взаимосвязаны. Если мы настраиваем быстрые реакции (интегральный коэффициент), то, как правило, силу воздействия (пропорциональный коэффициент) нужно ослабить.

Если регулировки настроены слабо (малая величина пропорционального коэффициента при значительной величине интегрального), то может наблюдаться:

- значительные расхождения по скорости в моменты ее смены (начало и конец разгона и замедления например просадка по скорости при переходе на скорость дотягивания, откат при начале движения)
- «плавание» скорости при равномерном движении на большой скорости (скорость все время колеблется в большую и меньшую сторону)

В подобных случаях обычно наиболее эффективным является увеличение пропорционального коэффициента.

Величину имеющегося расхождения по скорости можно контролировать в режиме реального времени, если включить, например, в параметре DIS_01 Speed Dev и перейти на отображение данного параметра во время движения (см. п.9.10).

Если регулировки настроены слишком сильно (на быстрые мощные реакции), то могут наблюдаться:

- «Жесткость» при движении (как бы реагирует на малейшие неровности) как правило наиболее эффективно увеличение значения интегрального коэффициента
- Перерегулирование. Обычно проявляется в виде вибрации, посторонних звуков (начиная со «стонов» и заканчивая громким рычанием – наиболее эффективно уменьшение пропорционального коэффициента

При крайнем перерегулировании движение отсутствует совсем. Лебедка дергается на месте с громким рычанием.

В отдельных случаях (актуально в основном для цилиндрических лебедок) для устранения вибраций на большой скорости может быть изменение параметров автотюнинга двигателя (для изменения значений Ld/Lq). Смотри «Параметры автотюнинга синхронного двигателя» в п.3.2 настоящего руководства.

9.7.2. Двойные уставки ПИ, устранение отката

Одни и те же установки ПИ регулятора на разной скорости будут работать по разному. То, что приемлемо на околонулевой скорости может давать слишком жесткие реакции или перерегулирование на большой скорости.

Поэтому, в преобразователе частоты предусмотрена возможность использования двух наборов уставок для ПИ коэффициентов.

Первый набор: CON 03 - CON 05 Второй набор: CON_06 - CON_08

Переключение между наборами уставок производится при достижении скорости (в обоих направлениях и при разгоне и при замедлении) установленной в CON 11 Target Speed. Переключение не мгновенное, выполняется за время установленное в CON 10 ASR Ramp.

Если скорость переключения уставок СОМ 11 выставлена в ноль, то работает только первый набор.

Если величину скорости переключения выставить небольшой (например 10-15об/мин для асинхронного двигателя), а время переключения побольше (400-500мс), то при замедлении переключение на второй набор, фактически, не произойдет (кабина остановится быстрее). Таким образом, второй набор будет работать только во время старта, что позволяет использовать его для устранения отката, настраивая в нем сильные и быстрые реакции. Пример:

Первый набор (основное движение)					
CON_03	ASR P Gain 1	50%			
CON_04	ASR I Gain 1	300ms			
CON_05	ASR Lpf 1	60ms			
Второй набор (работает при старте)					
CON_06	ASR P Gain 2	150%			
CON_07	ASR I Gain 2	20ms			
CON_08	ASR Lpf 2	0ms			
Переключение наборов					
CON_10	ASR Ramp	400ms			
CON_11	Target Speed	10rpm			

9.7.3. Устранение посторонних звуков при старте/останове

Если наблюдаются посторонние звуки при старте/останове, то, как правило, это связано в перерегулированием второго набора уставок (пункт 9.7.2).

Соответственно, для устранения данного эффекта можно просто выключить вторую рампу (выставив в CON 11 0.0rpm). Либо, если выключение второго набора настроек приводит к откату, уменьшить пропорциональный коэффициент 2 CON_06 (что обычно более эффективно) либо увеличив интегральный коэффициент 2 CON 07.

9.8. Особенности настройки движения для синхронного двигателя

Для синхронного двигателя применимы все принципы, изложенные в разделе 9.7 для асинхронного двигателя с энкодером. Но ввиду того, что отсутствует редуктор регулировки должны быть более быстрыми (как правило, значения интегральных коэффициентов используются более низкие), сильными и точными.

ООО «ПневмоЭлектроСервис» Версия 2.10 Страница 51

9.8.1. Функция противоотката (ARF)

Для обеспечения удержания на старте и предотвращения отката для синхронного двигателя используется специальная функция противоотката.

Принцип ее работы построен на использовании очень быстрых и сильных реакций системы для удержания двигателя на нулевой скорости при старте, на время необходимое для стабилизации моментов и токов.

Перечень параметров данной функции и базовые принципы его настройки приведены в п.5.3.1 настоящего руководства.

В течении всего времени работы работы функции противоотката (CON 71) будет поддерживаться нулевая скорость.

Кроме параметров автоматического регулятора скорости задействуется еще автоматический регулятор положения, который контролирует любые отклонения вала от начальной точки. Увеличение пропорционального коэффициента данного регулятора позволяет лучше контролировать удержание кабины в неподвижном состоянии, но может привести к перерегулированию или к чрезмерному «заряду» двигателя перед стартом (что приводит к резкому неконтролируемому набору скорости по окончании работы функции противоотката).

Слишком сильные настройки функции противоотката могут привести к накоплению слишком сильного магнитного поля, которое не может быть скомпенсировано автоматическим регулятором скорости при старте. Что дает попытку «взлета» и срабатывание защиты SpdDev. В подобных случаях следует уменьшить регулировки (например, увеличением интегрального коэффициента либо уменьшением пропорциональных коэффициентов).

Функция противоотката рассчитана на быстрые и очень сильные воздействия для компенсации попыток вращения механизма со значительной инерцией (включая инерцию кабины и противовеса). При вращении лебедки на холостом ходу (со скинутыми канатами) данная функция может давать рывки при старте или приводить к срабатыванию защиты по SpdDev. Для таких случаев рекомендуется отключать функцию противоотката выставив время работы противоотката CON_71 ARF Time в ноль.

9.8.2. Дополнительные настройки автоматического регулятора скорости

Кроме стандартных коэффициентов автоматического регулятора скорости (ПИ+фильтр), для синхронного двигателя предусмотрено еще два общих коэффициента.

CON_02 ASR PI Ratio – общий коэффициент на который умножаются все ПИ коэффициенты (первого и второго набора настроек а также функции противоотката). Данный коэффициент позволяет значительно ускорить или замедлить реакции системы в зависимости от инерции лифта сместив диапазон всех регулировки сразу.

Например, если мы выставляем интегральный коэффициент в функции противоотката в 1мс и этого окажется недостаточно, то дальше уменьшать его некуда, но если мы уменьшим CON 02 то мы сместим диапазон регулировок на более быстрые реакции и тем самым сможем достичь нужного результата.

Но самое актуальное применение данного коэффициента это настройка двигателей небольшой мощности (на лифтах небольшой грузоподъемности) и цилиндрических лебедок (которые имеют малое количество полюсов и малую собственную инерцию по сравнению с плоскими). Как правило, для успешной отстройки данных лебедок требуется увеличить значение коэффициента до 50-100 (одновременно увеличив интегральный коэффициент автоматического регулятора скорости при движении на большой скорости (CON_04).

PAR 57 Inertia – инерция механизма. Позволяет смягчить или ускорить наиболее быстрые реакции ПИ регулятора (сделав реакцию нелинейной). Уменьшение данного параметра дает мгновенный отклик, увеличение слегка замедляет реакции делая их более плавными.

Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

9.9. Выполнение настройки движения для асинхронного двигателя без энкодера

Порядок настройки:

- 1) Вносим рекомендованные настройки преобразователя частоты
 - величина CON_63 выше скорости дотягивания (8-10Гц)
 - величина CON_66 выше скорости дотягивания (8-10Гц)
- 2) Выполняем первые старты (с учетом изложенного в пункте 9.2.3)
- 3) Выставляем время замедления (согласно п.9.3)
- 4) Выставляем большую скорость.

Выставление производим путем запуска кабины лифта на полной скорости с самого верха вниз и обратно.

Если есть возможность замера фактической скорости с достаточной точностью (внешним прибором), то добиваемся чтобы скорость при движении вверх и вниз точно соответствовала заданной.

Если возможности замера нет, то можно замерить время движения в каждом из направлений и добиться, чтобы время движения вниз и вверх было примерно одинаковым (при движении с одинаковой фактической скоростью вверх и вниз). При окончании разгона наблюдается кратковременное превышение частоты с последующим уходом на постоянную величину. Добиваемся чтобы продолжительность превышения частоты была не более 1-1,5с.

Фактическая скорость движения на большой скорости регулируется параметрами:

CON_64 SlipGain_MH - для движения сверху вниз (для пустой кабины) - двигательный режим

CON_65 SlipGain_GH - для движения снизу вверх (для пустой кабины) - генераторный режим

Увеличение параметра увеличивает скорость движения при движении вниз (сокращает время полной поездки) и сокращает время превышения частоты при окончании разгона, уменьшение параметра уменьшает скорость движения.

- 5) Устанавливаем время разгона (см. пункт 9.5)
- 6) Выставляем точку останова при движении через этаж для лифтов с номинальной скоростью 1м/с или при движении через два этажа при большей номинальной скорости (смотри пункт 9.6)
- 7) Регулируем точку останова при движении на один этаж

Точку останова проверяем тем же самым методом, что в п.6 и на тот же самый этаж.

При движении на один этаж кабина должна останавливаться в той же точке, что и в п.6.

Регулировку осуществляем параметрами:

CON_67 SlipGain_ML - для движения сверху вниз (для пустой кабины) двигательный режим CON_68 SlipGain_GL - для движения снизу вверх (для пустой кабины) генераторный режим

Увеличение параметра сдвигает точку останова вверх (относительно порога), уменьшение параметра сдвигает точку останова вниз. Если после определенной величины дальнейшее увеличение CON_67 или CON_68 не сдвигает точку останова, то надо внести изменения в значение соответствующего коэффициента для большой скорости (CON_64 или CON_65).

Если параметры CON_67 и CON_68 изменялись на значительную величину, то это может также сдвинуть точки останова при движении через этаж. Поэтому, по окончании настройки проверить снова п.6 и если понадобится коррекция, то повторить после этого п.7.

Если есть возможность контролировать фактическую скорость, то в п.7 можно контролировать скорость дотягивания добиваясь, чтобы она соответствовала заданной (для четырех полюсного двигателя 30об/мин соответствуют 1Гц).

8) Проверяем токи при движении на большой скорости.

Пробуем изменять значения CON_46 ATB Gain_M и CON_47 ATB Gain_G в сторону увеличения и уменьшения с шагом в 5-10%.

Оптимальной будет величина обеспечивающая минимальные токи (включая переходные режимы), но гарантирующая уверенный старт и останов при максимальной нагрузке.

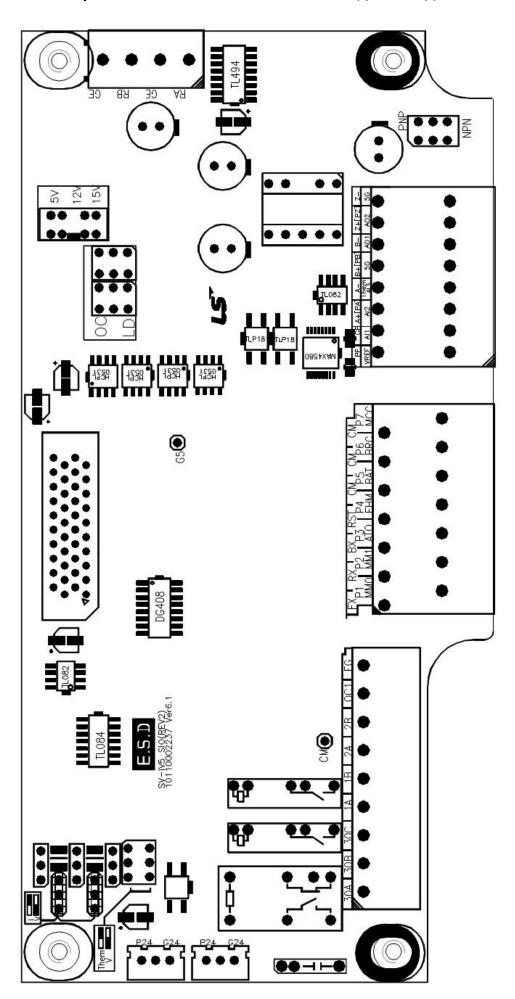
9.10. Контроль текущих параметров движения

Кроме отображения текущей скорости движения, момента, режима режима, частоты (для режима компенсации скольжения), которые отображаются на панели преобразователя частоты, можно в режиме реального времени контролировать и некоторые другие параметры, что значительно облегчает поиск неисправности в некоторых случаях и/или позволяет проследить динамику.

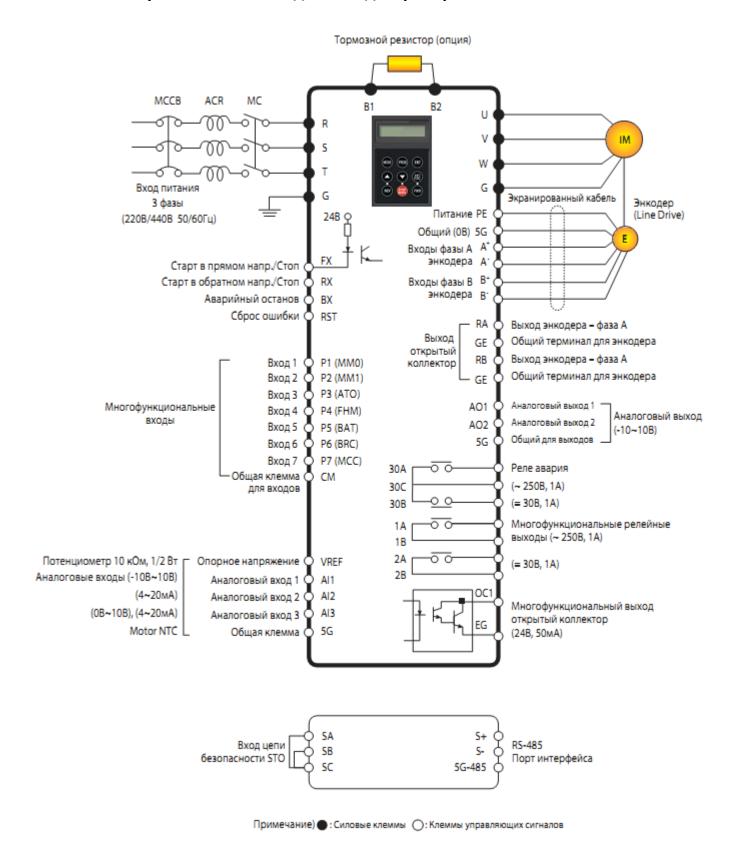
Для этого служат параметры DIS_01-DIS_03. Данные параметры абсолютно одинаковы и позволяют контролировать одни и те же величины. Для контроля любого параметра можно использовать любой из них.

Для этого нужно выставить в одном из этих параметров величину, которую мы хотим контролировать (нажать Prog, выбрать нужное значениеи подтвердить ввод кнопкой Ent), а далее во время движения выбрать нужный параметр, чтобы он отображался. Значение параметра будет меняться в режиме реального времени.

В зависимости от наличия сигнала ВХ у преобразователя частоты есть два состояния отображения: при поданном сигнале ВХ и при отсутствующем. При появлении/снятии сигнала ВХ производится переключение между этими двумя состояниями.

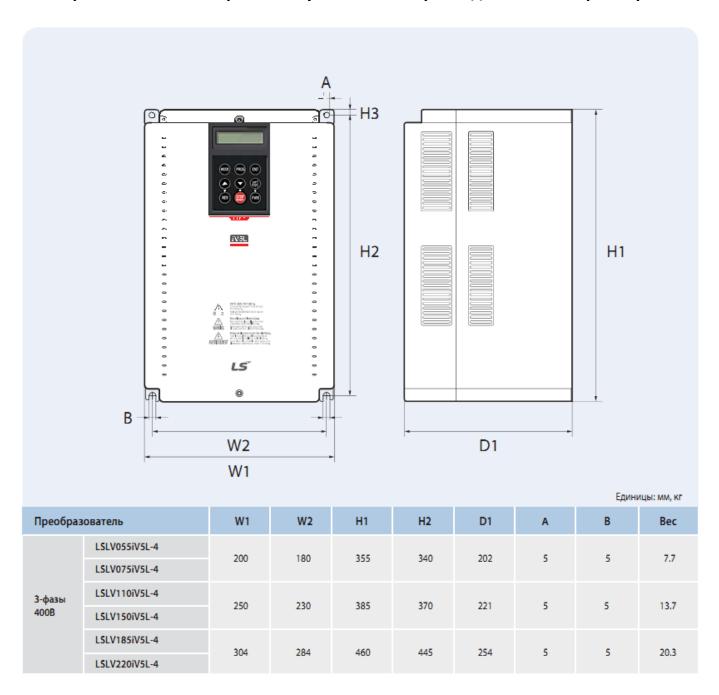

То есть, если например на станции НКУ (которая постоянно подает сигнал ВХ когда движения быть не должно), выбрать во время движения отображение DIS_01, то при остановке (подаче сигнала ВХ) преобразователь частоты переключится на основной экран. При новом движении (сигнал ВХ снят) преобразователь частоты автоматически переключится на отображение DIS_01.

Некоторые параметры, контроль которых может быть полезен:


- Speed Dev отклонение по скорости (расхождение между той скоростью что должна быть в текущий момент времени и фактической)
- Out Amps RMS среднеквадратичное значение тока на выходах
- Out Volt RMS среднеквадратичное значение напряжения на выходах
- Power выдаваемая мощность
- DC Bus Volt напряжение на звене постоянного тока преобразователя
- Inv Temp температура на IGBT модуле преобразователя частоты
- Run Time наработка в Лет:Месяцев:Дней:Часов:Минут
- Terminal In состояние входов (одиннадцать цифр: FX,RX,BX,Rst,P1,P2,P3,P4,P5,P6,P7)
- Terminal Out состояние выходов, 0 нет сигнала, 1 есть; слева-направо -ОС(транз.вых),АХ2(реле 2),АХ1(реле1),30АВС(аварийное реле)
- SinCos Endat версия прошивки платы SinCos/EnDat
- Theta Offset угол смещения (для синхронных двигателей)

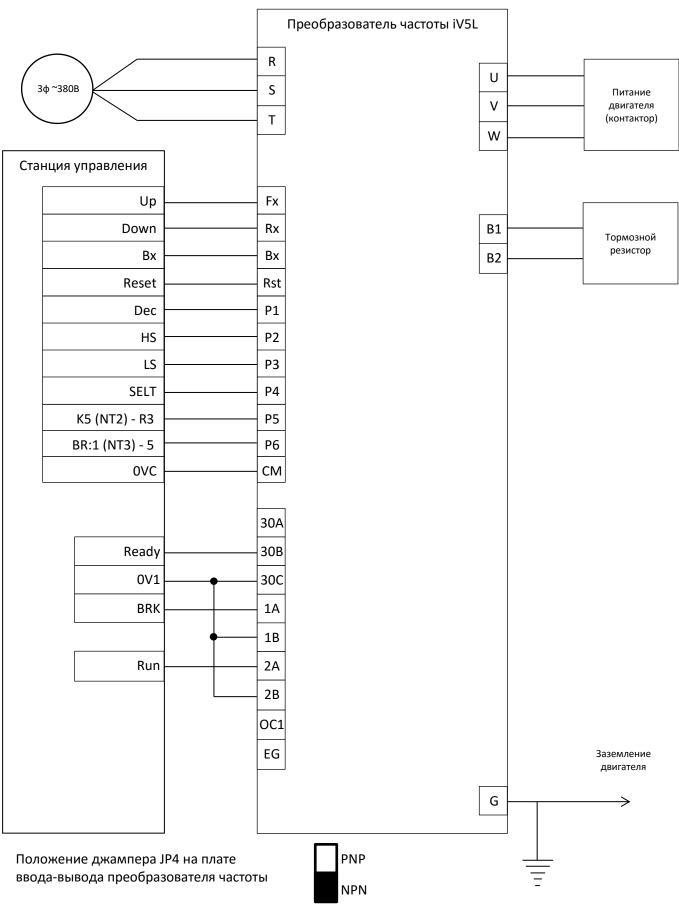
OOO «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru

Приложение А. Клеммы платы ввода-вывода



Приложение Б. Входы-выходы преобразователя частоты

ООО «ПневмоЭлектроСервис» Версия 2.10 Страница 56


Приложение В. Габаритные и установочно-присоединительные размеры

ООО «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: <u>skan@pes-rus.ru</u>

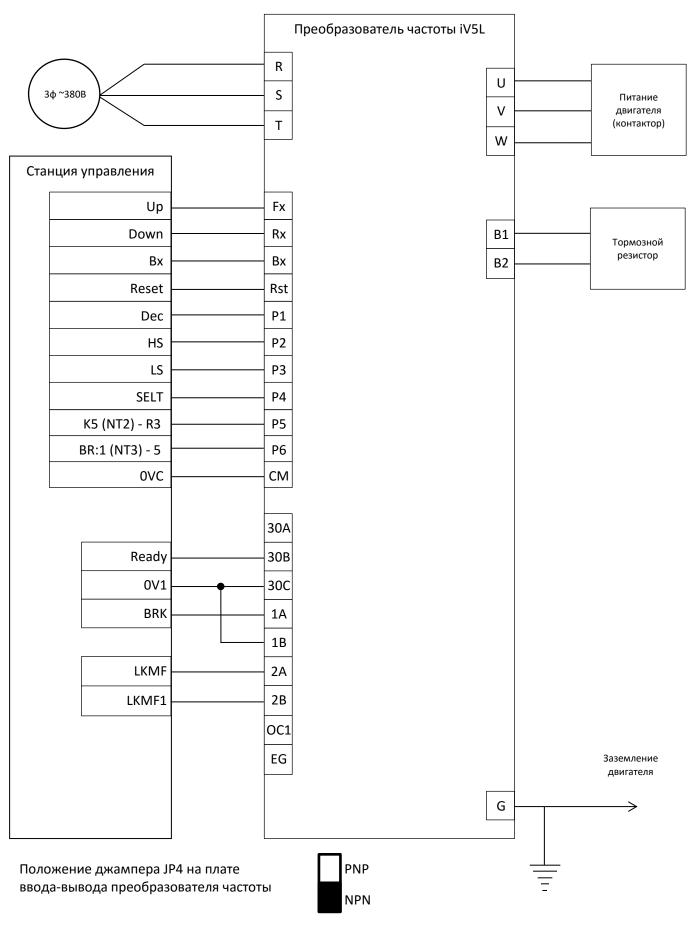

Приложение Г. Схемы подключения к станциям управления

Схема подключения к станции НКУ МППЛ (асинхронный двигатель)

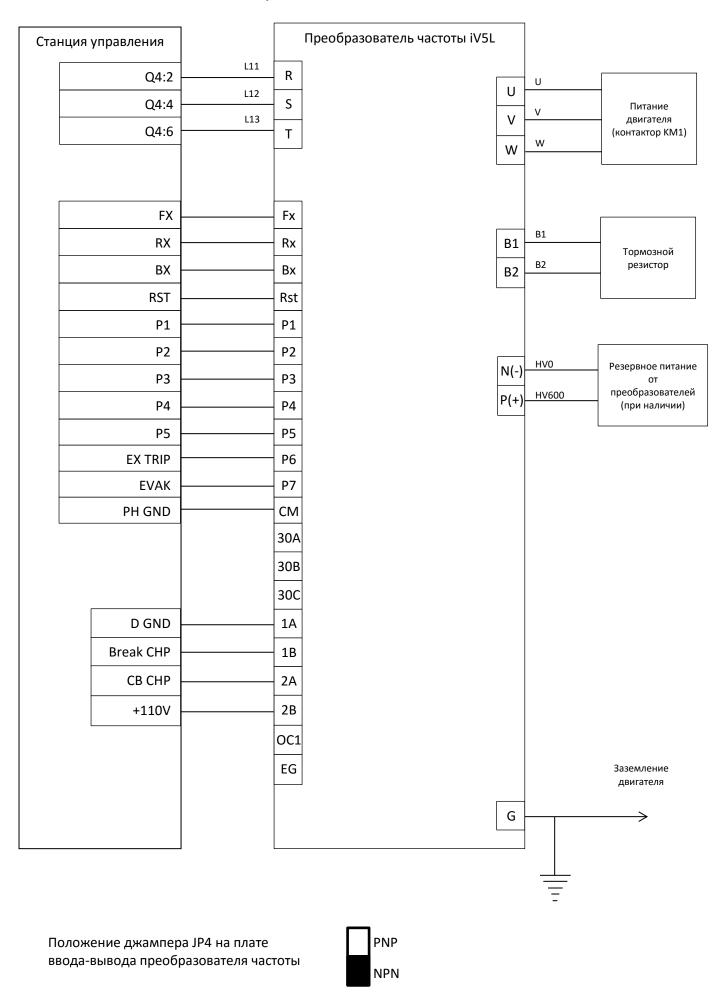

Полная схема подключения приведена в документации на станцию управления

Схема подключения к станции НКУ МППЛ/Лира (синхронный двигатель)

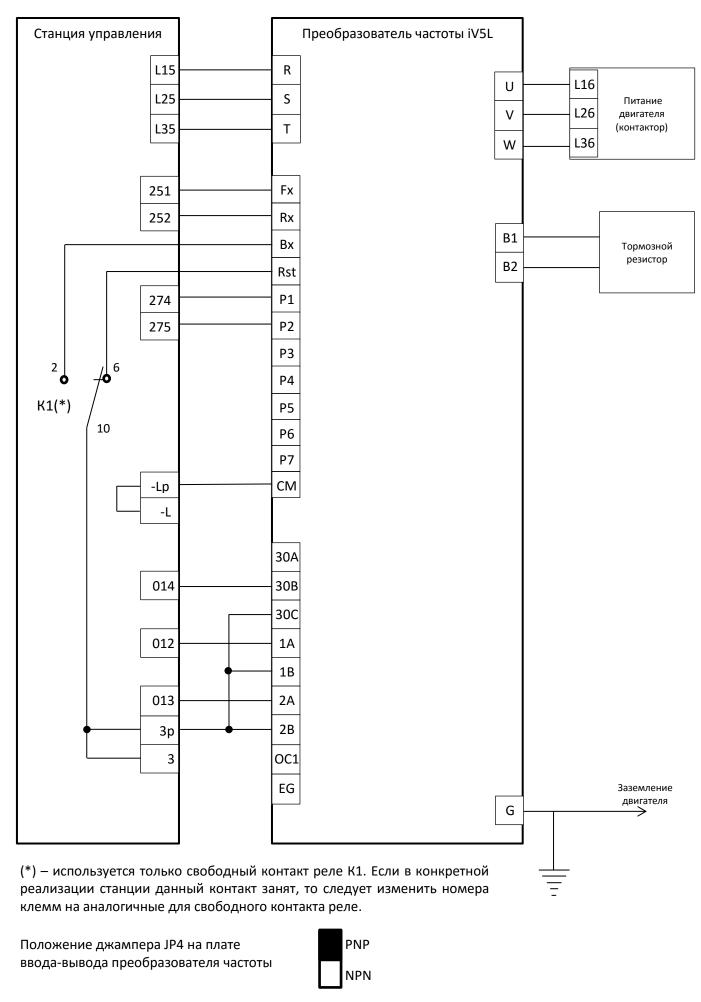
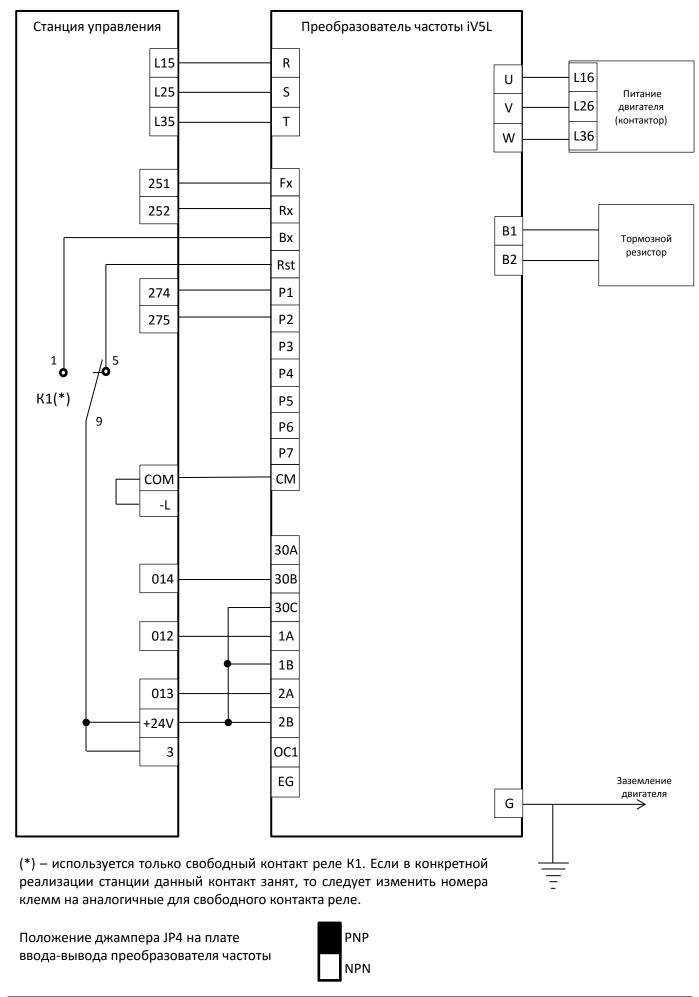

Полная схема подключения приведена в документации на станцию управления

Схема подключения к станции Союз



OOO «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: <u>skan@pes-rus.ru</u>

Схема подключения к станции УЛ

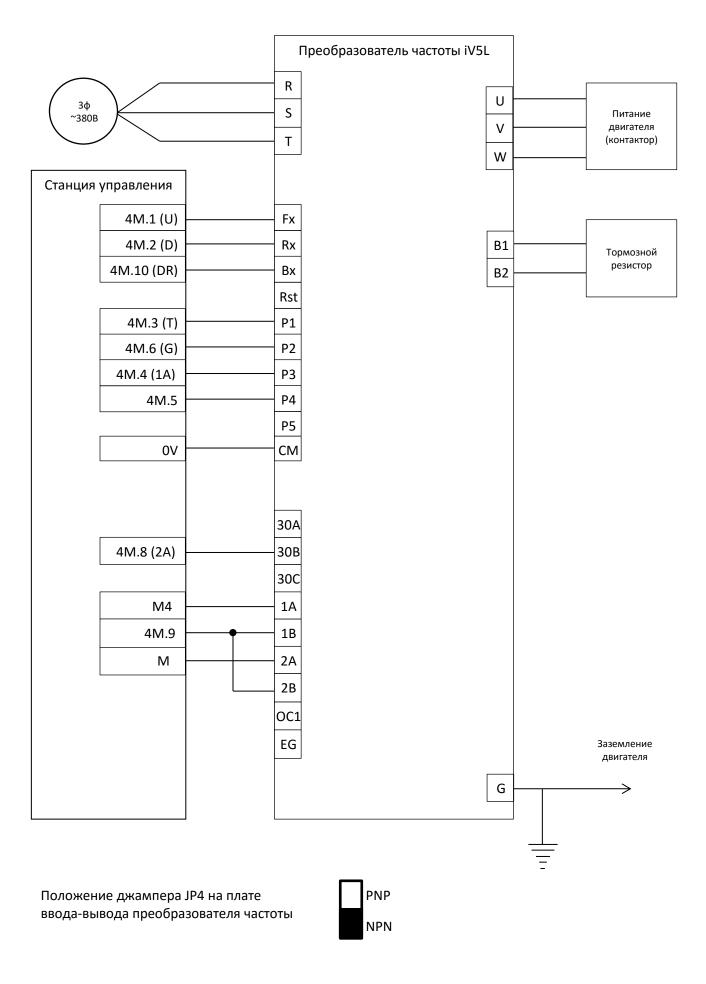


Схема подключения к станции УКЛ

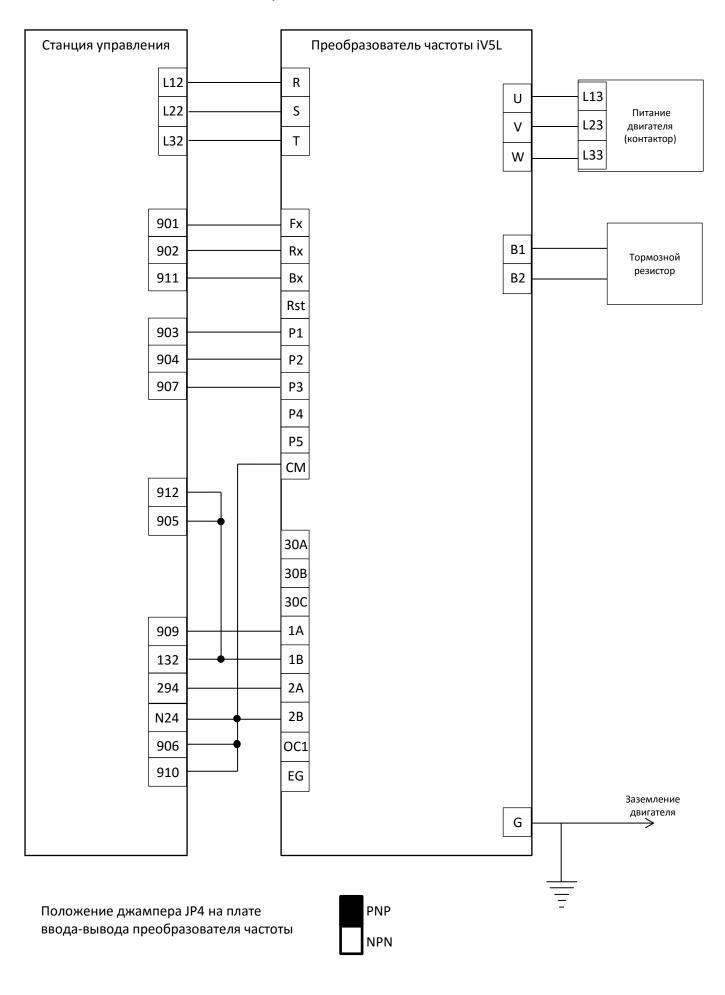

ООО «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: <u>skan@pes-rus.ru</u>

Схема подключения к станции МСУ Олимп

ООО «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: <u>skan@pes-rus.ru</u>

Схема подключения к станции ШУЛМ

Приложение Д. Сводные таблицы настроек

Последний вариант настроек, в том числе под конкретные лебедки можно получить обратившись в техподдержку.

Ввод параметров рекомендуется выполнять в следующем порядке (по группам) - PAR, DIO, FUN, CON, PRT так как некоторые параметры зависимы (например настройки управления тормозом в группе FUN будут доступны только после соответствующей настройки выхода в группе DIO).

1. Настройки зависящие от используемой станции управления

Пара- метр	Наименован. параметра	НКУ МППЛ/Лира	МСУ Олимп	ул/укл	ШУЛМ	Союз
				Скорость	Скорость	Дотягивания в
FUN_12	Speed 0	Нулевая	Нулевая	открытия	открытия	зоне ДТО
_		,	,	тормоза	тормоза	(0,05m/c)
FUN_13	Speed 1	Дотягивания	Большая	Дотягивания	Ревизии	Малая (0,2м/c)
FUN_14	Speed 2	Ревизии	Дотягивания	Ревизии	Дотягивания	Ревизии
FUN_15	Speed 3	Выравнивания		Большая	Большая	50% большой
FUN_16	Speed 4	Большая				60% большой
FUN_17	Speed 5					70% большой
FUN_18	Speed 6	Промежуточн.	Ревизии			80% большой
FUN_19	Speed 7	Цокольн. этажа				Большая
FUN_20	Jog Speed	0.01				Дотяг. вне ДТО
DIO_01	P1 Define	Speed L	Speed L	Speed L	Speed L	Speed-L
DIO_02	P2 Define	Speed H	Speed M	Speed M	Speed M	Speed-M
DIO_03	P3 Define	Speed M	Speed H	Not used	Battery Run	Speed-H
DIO_04	P4 Define	Xcel L	Battery Run	Not used	Not used	Jog Speed
DIO_05	P5 Define	Battery Run	Not used	Not used	Not used	Xcel-L
DIO_06	P6 Define	Jog Speed	Not used	Not used	Not used	Ext Trip-B
DIO_07	P7 Define	Not used	Not used	Not used	Not used	Battery Run
DIO_08	Neg Func. In	0000000000 (*1,2)	00100000000	00100000000	00100000000	00000000000
DIO_11	AX1 Define	Break Output	Break Output	Break Output	Break Output	Break Output
DIO_12	AX2 Define	MC On/Off	MC On/Off	Run	Inv Ready	Inv Ready
DIO_28	MC On Delay	100ms	100ms			
DIO_29	MC Off Delay	200ms	200ms			
PRT_05	Retry Number	0	5	5	5	0
PRT_06	Retry Delay	1c	1c	1c	1c	1c

Примечания:

- (*1) Для НЗ контактов тормоза второй бит справа установить в ноль (например 0000000000). Для НО контактов установить его в единицу (например 000000010)
- (*2) При наличии эвакуатора, если сигнал на вход P6 (Battery Run) формируется через Н3 контакт на блокировке БМ03 между контакторами К1 и К4 (новый вариант с сентября 2015г.) третий бит справа установить в единицу (например 000000100). Если сигнал эвакуации формируется через открытый допконтакт на блоке ПКОЗ-01-11 (старый вариант, ставится сверху контактора), то третий бит справа ставится в ноль (например 000000000).

2. Настройки под асинхронный двигатель с энкодером

Параметр	Наименование параметра	Значение	Параметр	Наименование параметра	Значение
PAR_07	Control Mode	Speed	PAR_22	Cooling Method	Self Cool
PAR_08	Application	General Vect	PAR_31	AutoTuneType	StandStill
PAR_09	Motor select	User define	PAR_34	Inertia tune	No
PAR_21	PWM Freq	8.0kHz	PAR_35	J Spd Time	0.500

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 65

Параметр	Наименование параметра	Значение	Параметр	Наименование параметра	Значение
PAR_36	Inertia LPF	0.100ms	CON_06	ASR P Gain 2	150%
PAR_41	AsynAutoTune	None	CON_07	ASR I Gain 2	20ms
DIO_31	BKOpen Time	0.20sec	CON_08	ASR LPF 2	0
DIO_32	BKOpen Spd	0.0rpm	CON_10	ASR Ramp	400ms
DIO_33	Release Curr	20.0%	CON_11	Target Speed	15.0rpm
DIO_36	BKClose Spd	0.0rpm	CON_33	Torque limit source	Kpd Kpd Kpd
FUN_01	Run/Stop Src	Terminal 1	CON_34	Positive Torque Lim	200%
FUN_02	Spd Ref Sel	Keypad1	CON_35	Negative Torque Lim	200%
FUN_03	Stop mode	Decel	CON_36	Reg Torque Lim	200%
FUN_20	Jog Speed	0.1rpm	CON_37	Torque Bias Source	None
FUN_21	Dwell Speed	0.0rpm	CON_38	Torque Bias	0.0%
FUN_22	Dwell Time	0.00sec	CON_39	Torque Bias FF	0.0%
FUN_33	Acc/Dec Ref	Max Speed	CON_40	Torque Balance	50.0%
FUN_36	Acc S Start	50.0%	PRT_01	ETH Select	Yes
FUN_37	Acc S End	50.0%	PRT_02	ETH 1min	150%
FUN_38	Dec S Start	50.0%	PRT_03	ETH Continuous	100%
FUN_39	Dec S End	50.0%	PRT_04	RST Restart	No
FUN_40	Time scale	0.01	PRT_06	Retry Delay	1.0sec
FUN_41	Acc Time-1	1.50sec	PRT_09	Enc Err Chk	Yes
FUN_42	Dec Time-1	1.10sec	PRT_10	Enc LPF	1ms
FUN_43	Acc Time-2	4.00sec	PRT_11	EncFaultTime	0.00sec
FUN_44	Dec Time-2	0.70sec	PRT_12	EncFaultPerc	25.0%
FUN_45	Acc Time-3	4.00sec	PRT_13	SpdErrLevel	100rpm
FUN_46	Dec Time-3	4.00sec	PRT_14	SpdErr Time	50ms
FUN_47	Acc Time-4	5.00sec	PRT_15	OverSpdLevel	110.0%
FUN_48	Dec Time-4	5.00sec	PRT_16	OverSpd Time	0.00sec
FUN_49	Use 0 Dec T	Yes	PRT_17	PhInOpenChk	Yes
FUN_50	0 Dec Time	3.00sec	PRT_18	PhInOpenLevel	3.0V
FUN_51	BX Time	0.00sec	PRT_19	PhOutOpenChk	Yes
FUN_52	BX Termi LPF	0	PRT_20	OL Level	150%
FUN_53	PreExct time	500ms	PRT_21	OL Time	10sec
FUN_54	Hold time	600ms	PRT_22	OLT Select	Yes
FUN_55	Power-on Run	No	PRT_23	OLT Level	180%
FUN_56	ShortFlr Spd	0.00rpm	PRT_24	OLT Time	60sec
FUN_73	Use Loadcell	No	PRT_29	LV2 Enable	No
FUN_57	ShortFlrTime	0.00sec	PRT_32	FUN Control	Temp Control
CON_03	ASR P Gain 1	100.0%	PRT_33	FUN Trip Sel	Warning
CON_04	ASR I Gain 1	300ms	PRT_34	Safety Sel	Latch
CON_05	ASR LPF 1	80ms			

В таблицу не включены параметры двигателя, параметры энкодера, результаты автотюнинга, которые также следует заполнить.

3. Настройки под асинхронный двигатель без энкодера

Параметр	Наименование параметра	Значение	Параметр	Наименование параметра	Значение
PAR_07	Control Mode	SlipComp	PAR_41	AsynAutoTune	None
PAR_08	Application	General Vect	DIO_30	BK On Delay (*1)	0.3sec
PAR_09	Motor select	User define	DIO_31	BKOpen Time	0.01sec
PAR_12	Min Speed	0.01Hz	DIO_32	BKOpen Spd	0.50Hz
PAR_21	PWM Freq	8.0kHz	DIO_33	Release Curr	20.0%
PAR_22	Cooling Method	Self Cooling	DIO_34	BK Off Delay (*1)	0.0c
PAR_31	AutoTuneType	StandStill	DIO_36	BKClose Spd	0.02Hz
PAR_34	Inertia tune	No	FUN_01	Run/Stop Src	Terminal 1
PAR_35	J Spd Time	0.500	FUN_02	Spd Ref Sel	Keypad1
PAR_36	Inertia LPF	0.100ms	FUN_03	Stop mode	DCBrake

OOO «ПневмоЭлектроСервис» Техническая поддержка: (383) 3252344, +79237002027; e-mail: <u>skan@pes-rus.ru</u>

Параметр	Наименование параметра	Значение	Параметр	Наименование параметра	Значение
FUN_06	DcBr Freq	0.02Hz	CON_43	Rev boost	3.0%
FUN_07	DcBlk Time	0.0sec	CON_45	ATB Filter	50мс
FUN_08	DcBr Value	100%	CON_46	voltGainAtbM	20%
FUN_09	DcBr Time	0.6sec	CON_47	voltGainAtbG	20%
FUN_10	DcSt Value	100%	CON_63	SlipCompFreq	10.0Гц
FUN_11	DcSt Time	0.6sec	CON_64	SlipGain_MH	100%
FUN_20	Jog Speed	0.02Hz	CON_65	SlipGain_GH	50%
FUN_21	Dwell Speed	0.00Hz	CON_66	SlipGainFrq	2.5Гц
FUN_22	Dwell Time	0.00sec	CON_67	SlipGain_ML	50%
FUN_33	Acc/Dec Ref	Max Speed	CON_68	SlipGain_GL	25%
FUN_36	Acc S Start	50.0%	CON_69	Slip Filter	100мс
FUN_37	Acc S End	50.0%	PRT_01	ETH Select	Yes
FUN_38	Dec S Start	50.0%	PRT_02	ETH 1min	150%
FUN_39	Dec S End	50.0%	PRT_03	ETH Continuous	100%
FUN_40	Time scale	0.01	PRT_04	RST Restart	No
FUN_41	Acc Time-1	1.50sec	PRT_05	Retry Number	0
FUN_42	Dec Time-1	1.10sec	PRT_06	Retry Delay	1.0sec
FUN_43	Acc Time-2	4.00sec	PRT_09	Enc Err Chk	No
FUN_44	Dec Time-2	0.70sec	PRT_10	Enc LPF	1ms
FUN_45	Acc Time-3	4.00sec	PRT_11	EncFaultTime	0.00sec
FUN_46	Dec Time-3	4.00sec	PRT_12	EncFaultPerc	25.0%
FUN_47	Acc Time-4	5.00sec	PRT_13	SpdErrLevel	100rpm
FUN_48	Dec Time-4	5.00sec	PRT_14	SpdErr Time	50ms
FUN_49	Use 0 Dec T	Yes	PRT_15	OverSpdLevel	120.0%
FUN_50	0 Dec Time	4.00sec	PRT_16	OverSpd Time	0.00sec
FUN_51	BX Time	0.00	PRT_17	PhInOpenChk	Yes
FUN_52	BX Termi LPF	0	PRT_18	PhInOpenLevel	3.0V
FUN_54	Hold time	600ms	PRT_19	PhOutOpenChk	Yes
FUN_55	Power-on Run	No	PRT_20	OL Level	150%
FUN_56	ShortFlr Spd	0.00rpm	PRT_21	OL Time	10sec
FUN_57	ShortFlrTime	0.00sec	PRT_22	OLT Select	Yes
FUN_58	AHR Sel	No	PRT_23	OLT Level	180%
FUN_59	AHR Pgain	3.00	PRT_24	OLT Time	60sec
FUN_60	AHRLow Freq	3.00	PRT_29	LV2 Enable	No
FUN_61	AHRHi Freq	60.00	PRT_32	FUN Control	Temp Control
FUN_73	Use Loadcell	No	PRT_33	FUN Trip Sel	Warning
CON_41	Torque boost	Auto	PRT_34	Safety Sel	Latch
CON_42	Fwd boost	3.0%			

^{*1 –} данные настройки будут доступны для просмотра и редактирования только после того как в группе FUN будет включено торможение постоянным током и выставлены время подачи постоянного тока при старте и при останове (FUN_03, 09, 11).

В таблицу не включены параметры двигателя, результаты автотюнинга, которые также следует заполнить.

3. Настройки под синхронный двигатель

Параметр	Наименование параметра	Значение	Параметр	Наименование параметра	Значение
PAR_07	Control Mode	Speed Sync	FUN_21	Dwell Speed	0.0rpm
PAR_08	Application	General Vect	FUN_22	Dwell Time	0.00sec
PAR_09	Motor select	User define	FUN_33	Acc/Dec Ref	Max Speed
PAR_21	PWM Freq	8.0kHz	FUN_36	Acc S Start	50.0%
PAR_22	Cooling Method	Self Cool ^{*1}	FUN_37	Acc S End	50.0%
PAR_31	Autotune type	Standstill	FUN_38	Dec S Start	50.0%

Версия 2.10 Техническая поддержка: (383) 3252344, +79237002027; e-mail: skan@pes-rus.ru Страница 67

Параметр	Наименование параметра	Значение	Параметр	Наименование параметра	Значение
PAR_51	SynAutoTune	No	FUN_39	Dec S End	50.0%
PAR_57	Inertia	30.0kgm ²	FUN_40	Time scale	0.01
DIO_31	BKOpen Time	0.20sec	FUN_41	Acc Time-1	1.50sec
DIO_32	BKOpen Spd	0.0rpm	FUN_42	Dec Time-1	1.10sec
DIO_33	Release Curr	20.0%	FUN_43	Acc Time-2	4.00sec
DIO_36	BKClose Spd	0.0rpm	FUN_44	Dec Time-2	0.70sec
FUN_01	Run/Stop Src	Terminal 1	FUN_45	Acc Time-3	4.00sec
FUN_02	Spd Ref Sel	Keypad1	FUN_46	Dec Time-3	4.00sec
FUN_03	Stop mode	Decel	FUN_47	Acc Time-4	5.00sec
FUN_20	Jog Speed	0.1rpm	FUN_48	Dec Time-4	5.00sec
FUN_49	Use 0 Dec T	Yes	CON_72	ARF ASR P	150%
FUN_50	0 Dec Time	3.00sec	CON_73	ARF ASR I	1ms
FUN_51	BX Time	0.00sec	CON_74	ARF APR P	300%
FUN_52	BX Termi LPF	0	PRT_01	ETH Select	Yes
FUN_54	Hold time	600ms	PRT_02	ETH 1min	150%
FUN_55	Power-on Run	No	PRT_03	ETH Continuous	100%
FUN_56	ShortFlr Spd	0.00rpm	PRT_04	RST Restart	No
FUN_57	ShortFlrTime	0.00sec	PRT_05	Retry Number	0
FUN_62	RegenAdv Sel	No	PRT_06	Retry Delay	1.0sec
FUN_73	Use Loadcell	No	PRT_09	Enc Err Chk	Yes
CON_02	ASR PI Ratio	15%	PRT_10	Enc LPF	0ms
CON_03	ASR P Gain 1	100%	PRT_11	EncFaultTime	0.00sec
CON_04	ASR I Gain 1	100ms	PRT_12	EncFaultPerc	25.0%
CON_05	ASR LPF 1	0ms	PRT_13	SpdErrLevel	10rpm
CON_06	ASR P Gain 2	100%	PRT_14	SpdErr Time	30ms
CON_07	ASR I Gain 2	20ms	PRT_15	OverSpdLevel	110.0%
CON_08	ASR LPF 2	0ms	PRT_16	OverSpd Time	0.00sec
CON_09	ASR FF Gain	0%	PRT_17	PhInOpenChk	Yes
CON_10	ASR Ramp	400ms	PRT_18	PhInOpenLevel	3.0V
CON_11	Target Speed	0.0rpm	PRT_19	PhOutOpenChk	Yes
CON_33	Torque limit source	Kpd Kpd Kpd	PRT_20	OL Level	150%
CON_34	Positive Torque Lim	150%	PRT_21	OL Time	10sec
CON_35	Negative Torque Lim	150%	PRT_22	OLT Select	Yes
CON_36	Reg. Torque Lim	150%	PRT_23	OLT Level	150%
CON_37	Torque Bias Source	None	PRT_24	OLT Time	5sec
CON_38	Torque Bias	0.0%	PRT_29	LV2 Enable	No
CON_39	Torque Bias FF	0.0%	PRT_32	FUN Control	Temp Control
CON_40	Torque Balance	50.0%	PRT_33	FUN Trip Sel	Warning
CON_71	ARF Time	800ms	PRT_34	Safety Sel	Latch

Примечание:

В таблицу не включены параметры двигателя, параметры энкодера, результаты автотюнинга и тюнинга энкодера, которые также следует заполнить.

^{*1 —} если используется двигатель с принудительным охлаждением (на двигателе установлены внешние электрические вентиляторы), то выставить значение Force Cool